Doklady Physics

, Volume 49, Issue 4, pp 239–245 | Cite as

Destabilization paradox

  • O. N. Kirillov
Mechanics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ziegler, Ing. Archiv. 20, 49 (1952).MATHMathSciNetGoogle Scholar
  2. 2.
    V. V. Bolotin, Nonconservative Problems in the Theory of Elastic Stability (Fizmatgiz, Moscow, 1961; Pergamon, London, 1965).Google Scholar
  3. 3.
    V. V. Bolotin and N. I. Zhinzher, Int. J. Solids Struct. 5, 965 (1969).Google Scholar
  4. 4.
    A. P. Seyranian, Usp. Mekh. 13(2), 89 (1990).Google Scholar
  5. 5.
    A. P. Seyranian, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 142 (1994).Google Scholar
  6. 6.
    V. F. Zhuravlev, Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 13 (1992).Google Scholar
  7. 7.
    A. P. Seyranian, Dokl. Akad. Nauk 348, 323 (1996) [Phys. Dokl. 41, 214 (1996)].Google Scholar
  8. 8.
    O. N. Kirillov, How Do Small Velocity-Dependent Forces (De)stabilize a Non-Conservative System? (Danish Center for Applied Mathematics and Mechanics-DCAMM, Copenhagen, 2003), Rep. No. 681.Google Scholar
  9. 9.
    V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations (Nauka, Moscow, 1978; Springer, New York, 1983).Google Scholar
  10. 10.
    H. Bilharz, Z. Angew. Math. Mech. 24, 77 (1944).MATHMathSciNetGoogle Scholar
  11. 11.
    Y. Sugiyama, in Modern Problems of Structural Stability (Springer, Vienna, 2002), pp. 341–394.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • O. N. Kirillov
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations