Phase transition in a self-repairing random network

  • A. S. Ioselevich
  • D. S. Lyubshin
Condensed Matter

Abstract

We consider a network the bonds of which are being sequentially removed; this is done at random but conditioned on the system remaining connected (self-repairing bond percolation, SRBP). This model is the simplest representative of a class of random systems for which the formation of isolated clusters is forbidden. It qualitatively describes the process of fabrication of artificial porous materials and degradation of strained polymers. We find a phase transition at a finite concentration of bonds p=pc, at which the backbone of the system vanishes; for all p< pc, the network is a dense fractal.

PACS numbers

64.60.Ak 61.43.Gt 81.05.Rm 81.16.Rf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Fransis, London, 1994).Google Scholar
  2. 2.
    A. Bunde and S. Havlin, in Fractals and Disordered Systems, Ed. by A. Bunde and S. Havlin (Springer, Berlin, 1996).Google Scholar
  3. 3.
    Disorder and Granular Media, Ed. by D. Bideau and A. Hansen (North-Holland, Amsterdam, 1993).Google Scholar
  4. 4.
    Handbook of Material Weathering, Ed. by G. Wypych, 3rd ed. (William Andrew, Norwich, N.Y., 2003); The Effect of UV Light and Weather on Plastics and Elastomers (PDL Staff, Plastics Design Library, 1994).Google Scholar
  5. 5.
    S. S. Manna and B. Subramanian, Phys. Rev. Lett. 76, 3460 (1996).CrossRefADSGoogle Scholar
  6. 6.
    R. Dobrin and P. M. Duxbury, Phys. Rev. Lett. 86, 5076 (2001).CrossRefADSGoogle Scholar
  7. 7.
    H. N. V. Temperley and E. H. Lieb, Proc. R. Soc. London, Ser. A 322, 251 (1971).ADSMathSciNetGoogle Scholar
  8. 8.
    R. M. Ziff, S. Finch, and V. Adamchik, Phys. Rev. Lett. 79, 3447 (1997).CrossRefADSGoogle Scholar
  9. 9.
    F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969; Mir, Moscow, 1973).Google Scholar
  10. 10.
    P. Grassberger, Physica A (Amsterdam) 262, 251 (1999).Google Scholar
  11. 11.
    C. M. Newman and D. L. Stein, Phys. Rev. Lett. 72, 2286 (1994).CrossRefADSGoogle Scholar
  12. 12.
    M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 76, 3754 (1996).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • A. S. Ioselevich
    • 1
  • D. S. Lyubshin
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations