The anisotropic conductivity of two-dimensional electrons on a half-filled high Landau evel

  • I. S. Burmistrov
Condensed Matter


We study the conductivity of two-dimensional interacting electrons on the half-filled Nth Landau level with N≫1 in the presence of quenched disorder. The existence of the unidirectional charge-density wave state at temperature T<T c , where T c is the transition temperature, leads to the anisotropic conductivity tensor. We find that the leading anisotropic corrections are proportional to (T c T)/T c just below the transition, in accordance with the experimental findings. Above T c , the correlations corresponding to the unidirectional charge-density wave state below T c result in corrections to the conductivity proportional to \(\sqrt {{{T_c } \mathord{\left/ {\vphantom {{T_c } {T - T_c }}} \right. \kern-\nulldelimiterspace} {T - T_c }}} \).

PACS numbers

73.20.Mf 71.45.Lr 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).CrossRefADSGoogle Scholar
  2. 2.
    The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin (Springer, Berlin, 1987; Mir, Moscow, 1989).Google Scholar
  3. 3.
    A. H. MacDonald and S. M. Girvin, Phys. Rev. B 33, 4009 (1986); A. P. Smith, A. H. MacDonald, and G. Gumbs, Phys. Rev. B 45, 8829 (1992); L. Belkhir and J. K. Jain, Solid State Commun. 94, 107 (1995); R. Morf and N. d’Ambrumenil, Phys. Rev. Lett. 74, 5116 (1995).ADSGoogle Scholar
  4. 4.
    I. L. Aleiner and L. I. Glazman, Phys. Rev. B 52, 11296 (1995).Google Scholar
  5. 5.
    A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996); Phys. Rev. B 54, 1853 (1996).CrossRefADSGoogle Scholar
  6. 6.
    R. Moessner and J. T. Chalker, Phys. Rev. B 54, 5006 (1996).CrossRefADSGoogle Scholar
  7. 7.
    I. S. Burmistrov and M. A. Baranov, Phys. Rev. B 68, 155328 (2003).Google Scholar
  8. 8.
    M. P. Lilly, K. B. Cooper, J. P. Eisenstein, et al., Phys. Rev. Lett. 82, 394 (1999); R. R. Du, D. C. Tsui, H. L. Stormer, et al., Solid State Commun. 109, 389 (1999); J. P. Eisenstein, M. P. Lilly, K. B. Cooper, et al., Physica E (Amsterdam) 9, 1 (2000).CrossRefADSGoogle Scholar
  9. 9.
    M. Fogler, in High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy, Ed. by C. Berthier, L.-P. Levy, and G. Martinez (Springer, Berlin, 2002).Google Scholar
  10. 10.
    I. S. Burmistrov, Zh. Éksp. Teor. Fiz. 122, 150 (2002) [JETP 95, 132 (2002)].Google Scholar
  11. 11.
    E. M. Baskin, L. N. Magarill, and M. V. Entin, Zh. Éksp. Teor. Fiz. 75, 723 (1978) [Sov. Phys. JETP 48, 365 (1978)].Google Scholar
  12. 12.
    K. B. Efetov, A. I. Larkin, and D. E. Khmel’nitzkii, Zh. Éksp. Teor. Fiz. 79, 1120 (1980) [Sov. Phys. JETP 52, 568 (1980)].Google Scholar
  13. 13.
    A. M. M. Pruisken, Nucl. Phys. B 235, 277 (1984).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    X.-G. Wu and S. L. Sondhi, Phys. Rev. B 51, 14725 (1995).Google Scholar
  15. 15.
    H. Fukuyama, P. M. Platzman, and P. W. Anderson, Phys. Rev. B 19, 5211 (1979).ADSGoogle Scholar
  16. 16.
    L. G. Aslamasov and A. I. Larkin, Phys. Lett. A 26, 238 (1968).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • I. S. Burmistrov
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations