Coexistence of different vacua in the effective quantum field theory and multiple point principle

  • G. E. Volovik
Gravity, Astrophysics


According to the Multiple Point Principle, our Universe is on the coexistence curve of two or more phases of the quantum vacuum. The coexistence of different quantum vacua can be regulated by the exchange of the global fermionic charges between the vacua, such as baryonic, leptonic, or family charge. If the coexistence is regulated by the baryonic charge, all the coexisting vacua exhibit the baryonic asymmetry. Due to the exchange of the baryonic charge between the vacuum and matter, which occurs above the electroweak transition, the baryonic asymmetry of the vacuum induces the baryonic asymmetry of matter in our Standard Model phase of the quantum vacuum. The present baryonic asymmetry of the Universe indicates that the characteristic energy scale, which regulates the equilibrium coexistence of different phases of quantum vacua, is about 106 GeV.

PACS numbers

11.30.Fs 12.10.Dm 98.80.Cq 64.10.+h 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giovanni Amelino-Camelia, gr-qc/0309054.Google Scholar
  2. 2.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).Google Scholar
  3. 3.
    D. L. Bennett, C. D. Froggatt, and H. B. Nielsen, in Proceedings of the 27th International Conference on High Energy Physics, Ed. by P. Bussey and I. Knowles (IOP, 1995), p. 557.Google Scholar
  4. 4.
    C. D. Froggatt, hep-ph/0312220.Google Scholar
  5. 5.
    C. D. Froggatt and H. B. Nielsen, hep-ph/0308144.Google Scholar
  6. 6.
    C. Froggatt, L. Laperashvili, R. Nevzorov, and H. B. Nielsen, hep-ph/0310127.Google Scholar
  7. 7.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1965).Google Scholar
  8. 8.
    E. M. Lifshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1978; Pergamon, New York, 1980).Google Scholar
  9. 9.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).Google Scholar
  10. 10.
    G. E. Volovik, JETP Lett. 78, 691 (2003).ADSGoogle Scholar
  11. 11.
    M. Dine and A. Kusenko, Rev. Mod. Phys. 76, 1 (2004).ADSGoogle Scholar
  12. 12.
    M. Trodden, Rev. Mod. Phys. 71, 1463 (1999).CrossRefADSGoogle Scholar
  13. 13.
    A. J. Leggett and S. Takagi, Phys. Rev. Lett. 34, 1424 (1975); Ann. Phys. (N.Y.) 106, 79 (1977).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • G. E. Volovik
    • 1
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland

Personalised recommendations