Comparative study of ESR spectra in incommensurate antiferromagnets

  • S. S. Sosin
  • L. A. Prozorova
  • M. E. Zhitomirsky
Condensed Matter


The electron spin resonance is studied for noncollinear low-dimensional antiferromagnets RbMnBr3 and RbFe(MoO4)2 in a wide range of frequencies and fields. Both compounds have incommensurate spin structures appearing due to a low-symmetry distortion of an ideal hexagonal crystal lattice. Magnetic field applied in the spin plane induces a first-order transition into the commensurate phase. The low-energy resonance branch corresponding to a uniform oscillation of the spin system in the easy plane is observed in the two compounds in both incommensurate and commensurate phases, with a dramatic change of the spectra taking place near the transition field. The resonance spectrum of a nearly commensurate spin structure with long-wave modulations is analyzed in clean and dirty limits in the framework of a hydrodynamic approach. The resonance branch with steep field dependence in the incommensurate state is attributed to the acoustic mode with the gap resulted from pinning of local domain walls (discommensurations) on defects of the crystal structure.

PACS numbers

75.50.Ee 76.50.+g 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. E. Dzyaloshinskii, Zh. Éksp. Teor. Fiz. 46, 1420 (1964) [Sov. Phys. JETP 19, 960 (1964)].Google Scholar
  2. 2.
    D. Visser, G. C. Verschoor, and D. J. W. Ijdo, Acta Crystallogr. B 36, 28 (1980).CrossRefGoogle Scholar
  3. 3.
    T. Kato, J. Phys. Soc. Jpn. 71, 300 (2002).Google Scholar
  4. 4.
    L. Heller, M. F. Collins, Y. S. Yang, and B. Collier, Phys. Rev. B 49, 1104 (1994).CrossRefADSGoogle Scholar
  5. 5.
    W. Zhang, W. M. Saslow, and M. Gabay, Phys. Rev. B 44, 5129 (1991); W. Zhang, W. M. Saslow, M. Gabay, and M. Benakli, Phys. Rev. B 48, 10204 (1993).ADSGoogle Scholar
  6. 6.
    M. E. Zhitomirsky, Phys. Rev. B 54, 353 (1996).ADSGoogle Scholar
  7. 7.
    S. A. Klimin, M. N. Popova, B. N. Mavrin, et al., Phys. Rev. B 68, 174408 (2003).Google Scholar
  8. 8.
    G. Gasparovic, M. Kenzelmann, C. Broholm, et al. (unpublished).Google Scholar
  9. 9.
    I. M. Vitebskii, O. A. Petrenko, S. V. Petrov, and L. A. Prozorova, JETP 76, 178 (1993).ADSGoogle Scholar
  10. 10.
    M. E. Zhitomirsky, O. A. Petrenko, and L. A. Prozorova, Phys. Rev. B 52, 3511 (1995).CrossRefADSGoogle Scholar
  11. 11.
    L. E. Svistov, A. I. Smirnov, L. A. Prozorova, et al., Phys. Rev. B 67, 094434 (2003).Google Scholar
  12. 12.
    I. A. Zaliznyak, N. N. Zorin, and S. V. Petrov, JETP Lett. 64, 473 (1996).CrossRefADSGoogle Scholar
  13. 13.
    L. A. Prozorova, S. S. Sosin, D. V. Efremov, and S. V. Petrov, JETP 85, 1035 (1997).CrossRefADSGoogle Scholar
  14. 14.
    I. E. Dzyaloshinskii, Zh. Éksp. Teor. Fiz. 47, 992 (1964) [Sov. Phys. JETP 20, 665 (1965)].Google Scholar
  15. 15.
    P. Lebwohl and M. J. Stephen, Phys. Rev. 163, 376 (1967); A. L. Fetter and M. J. Stephen, Phys. Rev. 168, 475 (1968).CrossRefADSGoogle Scholar
  16. 16.
    W. L. McMillan, Phys. Rev. B 16, 4655 (1977).ADSGoogle Scholar
  17. 17.
    V. L. Pokrovsky and A. L. Talapov, Sov. Phys. JETP 48, 579 (1978).Google Scholar
  18. 18.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, London, 1963).Google Scholar
  19. 19.
    A. I. Pankrats, G. A. Petrakovskii, M. A. Popov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 78, 1058 (2003) [JETP Lett. 78, 569 (2003)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • S. S. Sosin
    • 1
  • L. A. Prozorova
    • 1
  • M. E. Zhitomirsky
    • 2
  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Commissariat á l’Energie AtomiqueDMS/DRFMC/SPSMSGrenobleFrance

Personalised recommendations