Advertisement

Ionization mechanisms of aluminum acceptor impurity in silicon

  • T. N. Mamedov
  • D. G. Andrianov
  • D. Herlach
  • V. N. Gorelkin
  • A. V. Stoikov
  • U. Zimmermann
Atoms, Spectra, Radiations

Abstract

Processes of ionization of shallow acceptor centers (ACs) in silicon are studied. In crystalline silicon samples with phosphorus (1.6×1013, 2.7×1013, and 2.3×1015cm−3) and boron (1.3×1015cm−3) impurities, μAl impurity atoms were produced by implantation of negative muons. It is found that thermal ionization is the main mechanism for ionizing the Al acceptor impurity in both p-type and n-type silicon with an impurity concentration of ≲1015cm−3 at T>45 K. The thermal ionization rate of Al ACs in Si varies from ∼105 to ∼106s−1 in the temperature range 45–55 K.

PACS numbers

71.55.Cn 61.72.Tt 76.75.+i 36.10.Dr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. N. Mamedov, A. V. Stoikov, and V. N. Gorelkin, Fiz. Élem. Chastits At. Yadra 33, 1005 (2002) [Phys. Part. Nucl. 33, 519 (2002)].Google Scholar
  2. 2.
    T. N. Mamedov, D. Herlach, V. N. Gorelkin, et al., Physica B (Amsterdam) 326, 97 (2003).ADSGoogle Scholar
  3. 3.
    T. N. Mamedov, I. L. Chaplygin, V. N. Duginov, et al., J. Phys.: Condens. Matter 11, 2849 (1999).CrossRefADSGoogle Scholar
  4. 4.
    V. N. Gorelkin, T. N. Mamedov, and A. S. Baturin, Physica B (Amsterdam) 289–290, 585 (2000).Google Scholar
  5. 5.
    G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).Google Scholar
  6. 6.
    H. Neubrand, Phys. Status Solidi B 86, 269 (1978).Google Scholar
  7. 7.
    T. Susuki, D. F. Measday, and J. P. Roalsvig, Phys. Rev. C 35, 2212 (1987).ADSGoogle Scholar
  8. 8.
    T. N. Mamedov, D. G. Andrianov, D. Herlach, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 515 (2002) [JETP Lett. 76, 440 (2002)].Google Scholar
  9. 9.
    A. G. Milnes, Deep Impurities in Semiconductors (Wiley, New York, 1973; Mir, Moscow, 1977).Google Scholar
  10. 10.
    S. K. Tewksbury, J. Appl. Phys. 53, 3865 (1982).CrossRefADSGoogle Scholar
  11. 11.
    Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991).Google Scholar
  12. 12.
    E. Rosencher, V. Mosser, and G. Vincent, Phys. Rev. B 29, 1135 (1984).CrossRefADSGoogle Scholar
  13. 13.
    R. Abela, C. Baines, X. Donath, et al., Hyperfine Interact. 87, 1105 (1994).CrossRefGoogle Scholar
  14. 14.
    V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Fiz. Tekh. Poluprovodn. (Leningrad) 12, 3 (1978) [Sov. Phys. Semicond. 12, 1 (1978)].Google Scholar
  15. 15.
    K. V. Shalimova, Physics of Semiconductors (Énergiya, Moscow, 1971).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • T. N. Mamedov
    • 1
  • D. G. Andrianov
    • 2
  • D. Herlach
    • 3
  • V. N. Gorelkin
    • 4
  • A. V. Stoikov
    • 1
  • U. Zimmermann
    • 3
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow regionRussia
  2. 2.State Research and Project Institute of Rare-Metal Industry “Giredmet,”MoscowRussia
  3. 3.Paul Scherrer InstitutVilligen PSISwitzerland
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow regionRussia

Personalised recommendations