Journal of Experimental and Theoretical Physics

, Volume 98, Issue 2, pp 348–351 | Cite as

Effective equation of nonlinear pulse evolution in a randomly anisotropic medium

  • I. V. Kolokolov
  • K. S. Turitsyn
Nonlinear Physics


Propagation of a light pulse through a weakly inhomogeneous optical fiber is analyzed. The non-linear envelope equation describing the evolution of polarized pulses is determined by statistical properties of inhomogeneities in the optical fiber. The isotropic Manakov system of equations is shown to be applicable in the presence of high-frequency small-scale defects in the fiber. In the presence of only large-scale inhomogeneities, the signal dynamics are described by an anisotropic system of equations.


Spectroscopy State Physics Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, New York, 2001).Google Scholar
  2. 2.
    A. L. Berkhoer and V. E. Zakharov, Zh. Éksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].Google Scholar
  3. 3.
    P. K. A. Wai and C. R. Menyuk, Opt. Lett. 19, 1517 (1994).ADSGoogle Scholar
  4. 4.
    A. M. Dykhne, Zh. Éksp. Teor. Fiz. 41, 1326 (1961) [Sov. Phys. JETP 14, 941 (1962)].Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Nauka, Moscow, 1974; Pergamon, New York, 1977).Google Scholar
  6. 6.
    M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).ADSMathSciNetGoogle Scholar
  7. 7.
    M. Chertkov, I. Gabitov, I. Kolokolov, and V. Lebedev, Pis’ma Zh. Éksp. Teor. Fiz. 74, 608 (2001) [JETP Lett. 74, 535 (2001)].Google Scholar
  8. 8.
    M. I. Petrashen’ and E. D. Trifonov, Applications of Group Theory in Quantum Mechanics, 2nd ed. (UrSS, Moscow, 2000; Butterworths, London, 1969).Google Scholar
  9. 9.
    S. V. Manakov, Zh. Éksp. Teor. Fiz. 65, 505 (1974) [Sov. Phys. JETP 38, 248 (1974)].ADSGoogle Scholar
  10. 10.
    C. R. Menyuk and P. K. A. Wai, J. Light Technol. 14, 148 (1996).Google Scholar
  11. 11.
    C. R. Menyuk and P. K. A. Wai, J. Opt. Soc. Am. B 11, 1288 (1994).ADSGoogle Scholar
  12. 12.
    C. D. Poole, J. H. Winters, and J. A. Nagel, Opt. Lett. 16, 372 (1991).ADSGoogle Scholar
  13. 13.
    M. Chertkov, Y. Chung, A. Dyachenko, et al., Phys. Rev. E 67, 036615 (2003).Google Scholar
  14. 14.
    Y. Chung, V. Lebedev, and S. S. Vergeles, Jr., Opt. Lett. (in press).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • I. V. Kolokolov
    • 1
    • 2
  • K. S. Turitsyn
    • 2
  1. 1.Budker Institute of Nuclear Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations