Advertisement

Universal temperature corrections to the free energy for the gravitational field

  • G. E. Volovik
  • A. Zelnikov
Gravity, Astrophysics

Abstract

The temperature correction to the free energy of the gravitational field is considered which does not depend on the Planck energy physics. The leading correction may be interpreted in terms of the temperature-dependent effective gravitational constant Geff. The temperature correction to appears to be valid for all temperatures TEPlanck. It is universal since it is determined only by the number of fermionic and bosonic fields with masses mT, does not contain the Planck energy scale EPlanck which determines the gravitational constant at T=0, and does not depend on whether or not the gravitational field obeys the Einstein equations. That is why this universal modification of the free energy for gravitational field can be used to study thermodynamics of quantum systems in condensed matter (such as quantum liquids superfluid 3He and 4He), where the effective gravity emerging for fermionic and/or bosonic quasiparticles in the low-energy corner is quite different from the Einstein gravity.

PACS numbers

04.62.+v 05.30.−d 67.90.+z 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967) [Sov. Phys. Dokl. 12, 1040 (1968)]; Gen. Relativ. Gravit. 32, 365 (2000).Google Scholar
  2. 2.
    T. Jacobson, gr-qc/9404039.Google Scholar
  3. 3.
    V. P. Frolov, D. V. Fursaev, and A. I. Zelnikov, Nucl. Phys. B 486, 339 (1997).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).Google Scholar
  5. 5.
    C. Wetterich, hep-th/0307145.Google Scholar
  6. 6.
    Yu. V. Gusev and A. I. Zelnikov, Phys. Rev. D 59, 024002 (1999).Google Scholar
  7. 7.
    D. V. Fursaev, hep-th/0311080; D. V. Fursaev, Nucl. Phys. B (Proc. Suppl.) 104, 33 (2002); hep-th/0107089.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J. S. Dowker and J. P. Schofield, Nucl. Phys. B 327, 267 (1989).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    V. P. Frolov and A. I. Zelnikov, Phys. Rev. D 35, 3031 (1987).ADSMathSciNetGoogle Scholar
  10. 10.
    J. W. York, Jr., Phys. Rev. D 33, 2092 (1986).CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    S. W. Hawking and C. J. Hunter, Class. Quantum Grav. 13, 2735 (1996).ADSMathSciNetGoogle Scholar
  12. 12.
    M. C. Cross, J. Low Temp. Phys. 21, 525 (1975).CrossRefGoogle Scholar
  13. 13.
    J. S. Dowker and J. P. Schofield, Phys. Rev. D 38, 3327 (1988).CrossRefADSGoogle Scholar
  14. 14.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981); Phys. Rev. D 51, 2827 (1995).CrossRefADSGoogle Scholar
  15. 15.
    U. R. Fischer and M. Visser, Ann. Phys. (N.Y.) 304, 22 (2003).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    G. E. Volovik, JETP Lett. 65, 491 (1997).ADSGoogle Scholar
  17. 17.
    A. Junod, B. Revaz, Y. Wang, and A. Erb, Physica B (Amsterdam) 284–288, 1043 (2000).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  • A. Zelnikov
    • 3
    • 4
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Theoretical Physics InstituteUniversity of AlbertaEdmontonCanada
  4. 4.Lebedev Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations