Dark matter from the SU(4) model

  • G. E. Volovik
Gravity, Astrophysics


The left-right symmetric Pati-Salam model of the unification of quarks and leptons is based on the SU(4) and SU(2)×SU(2) symmetry groups. These groups are naturally extended to include the classification of families of quarks and leptons. We assume that the family group (the group which unites the families) is also the SU(4) group. The properties of the fourth generation of fermions are the same as those of the ordinary-matter fermions in the first three generations except for the family charge of the SU(4)F group: F=(1/3, 1/3, 1/3, −1), where F=1/3 for fermions of ordinary matter and F=−1 for the fourth-generation fermions. The difference in F does not allow mixing between ordinary and fourth-generation fermions. Because of the conservation of the Fcharge, the creation of baryons and leptons in the process of electroweak baryogenesis must be accompanied by the creation of fermions of the fourth generation. As a result, the excess n B of baryons over antibaryons leads to the excess n=N−N̄ of neutrinos over antineutrinos in the fourth generation with n=n B . This massive neutrino may form nonbaryonic dark matter. In principle, the mass density of the fourth neutrino nm N in the Universe can make the main contribution to dark matter, since the lower bound on the neutrino mass m N from the data on decay of the Z bosons is m N <m Z /2. The straightforward prediction of this model leads to the amount of cold dark matter relative to baryons, which is an order of magnitude higher than allowed by observations. This inconsistency may be avoided by nonconservation of the F charge.

PACS numbers

12.10.−g 12.60.Rc 95.35.+d 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Pati and A. Salam, Phys. Rev. Lett. 31, 661 (1973).CrossRefADSGoogle Scholar
  2. 2.
    J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).CrossRefADSGoogle Scholar
  3. 3.
    R. Foot, H. Lew, and R. R. Volkas, Phys. Rev. D 44, 859 (1991).ADSGoogle Scholar
  4. 4.
    J. C. Pati, hep-ph/0005095.Google Scholar
  5. 5.
    J. C. Pati, hep-ph/0204240.Google Scholar
  6. 6.
    S. L. Adler, Int. J. Mod. Phys. A 14, 1911 (1999).ADSzbMATHGoogle Scholar
  7. 7.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).Google Scholar
  8. 8.
    H. Terazawa, in Proceedings of 22nd International Workshop on the Fundamental Problems of High Energy Physics and Field Theory, KEK Preprint No. 99-46 (1999).Google Scholar
  9. 9.
    F. Wilczek and A. Zee, Phys. Rev. D 25, 553 (1982).CrossRefADSGoogle Scholar
  10. 10.
    J. E. Dubicki and C. D. Froggatt, hep-ph/0305007.Google Scholar
  11. 11.
    S. S. Bulanov, V. A. Novikov, L. B. Okun, et al., hep-ph/0301268.Google Scholar
  12. 12.
    D. Fargion, M. Yu. Khlopov, R. V. Konoplich, and R. Mignani, JETP Lett. 68, 685 (1998); K. M. Belotsky, T. Damour, and M. Yu. Khlopov, Phys. Lett. B 529, 108 (2002); K. Belotsky, D. Fargion, M. Khlopov, et al., hep-ph/0210153.CrossRefADSGoogle Scholar
  13. 13.
    M. I. Vysotsky, A. D. Dolgov, and Ya. B. Zeldovich, JETP Lett. 26, 188 (1977); B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977); K. Sato and M. Kobayashi, Prog. Theor. Phys. 58, 1775 (1977); P. Hut, Phys. Lett. B 69B, 85 (1977).ADSGoogle Scholar
  14. 14.
    V. A. Novikov, L. B. Okun, A. N. Rozanov, and M. I. Vysotsky, JETP Lett. 76, 127 (2002).CrossRefADSGoogle Scholar
  15. 15.
    D. N. Spergel, L. Verde, H. V. Peiris, et al., Astrophys. J., Suppl. 148, 175 (2003).CrossRefADSGoogle Scholar
  16. 16.
    R. Cyburt, B. D. Fields, and K. A. Olive, Phys. Lett. B 567, 227 (2003); G. Steigman, astro-ph/0308511.ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations