Advertisement

Technical Physics

, Volume 49, Issue 1, pp 108–113 | Cite as

Electron flow enhancement with a diamond membrane

  • S. A. Gavrilov
  • N. N. Dzbanovsky
  • É. A. Il’ichev
  • P. V. Minakov
  • É. A. Poltoratsky
  • G. S. Rychkov
  • N. V. Suetin
Surfaces, Electron and Ion Emission

Abstract

Secondary electron emission from 2.5-to 5.0-µm thick diamond films (membranes) is considered. The process is studied in the reflection regime, where secondary electrons leave the front surface of the membrane exposed to primary electrons, and in the transmission regime, where primary electrons cause secondary emission from the opposite surface. The secondary emission coefficient is determined based on the behavior of 0.1-to 30-keV electrons in the solid. In the reflection regime, the secondary emission coefficient may be higher than 100 for electron energies of about 3 keV; in the transmission regime, it is no more than 5 even for 30-keV electrons. The emissivity of the membranes in the transmission regime can be improved, specifically, by using porous membranes, which allow one to obtain characteristics similar to those in the reflection regime. Experimental data obtained agree with calculations. The production of diamond films, including porous membranes, is described.

Keywords

Electron Energy Emissivity Secondary Electron Electron Emission Electron Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Himpsel, J. A. Knapp, J. A. van Vechten, et al., Phys. Rev. B 20, 624 (1979).ADSGoogle Scholar
  2. 2.
    A. T. Rakhimon, N. V. Suetin, E. S. Soldaton, et al., J. Vac. Sci. Technol. B 18(1), 76 (2000).Google Scholar
  3. 3.
    G. T. Mearini, I. L. Krainsky, and J. A. Dayton, Surf. Interface Anal. 21, 138 (1994).CrossRefGoogle Scholar
  4. 4.
    G. T. Mearini, I. L. Krainsky, J. A. Dayton, et al., Appl. Phys. Lett. 66, 242 (1995).CrossRefADSGoogle Scholar
  5. 5.
    N. N. Dzbanovsky, P. A. Minakov, A. F. Pal, et al., in Proceedings of the 3rd International Conference on Vacuum Electron Sources “IVESC-2000,” Orlando, 2000, p. 33.Google Scholar
  6. 6.
    Physics Pocket Book, Ed. by H. Ebert (Oliver & Boyd, Edinburgh, 1967; Nauka, Moscow, 1973).Google Scholar
  7. 7.
    P. Atkins, Quanta: A Handbook of Concepts, 2nd ed. (Oxford Univ. Press, Oxford, 1991; Mir, Moscow, 1977).Google Scholar
  8. 8.
    T. E. Evehart and P. H. Hoff, J. Appl. Phys. 42, 5837 (1971).Google Scholar
  9. 9.
    N. N. Dzbanovsky, P. A. Minakov, A. F. Pal, et al., in Proceedings of the International Topical Meeting on Field Electron Emission from Carbon Materials, Moscow, 2001.Google Scholar
  10. 10.
    J. E. Yater, A. Shih, and R. H. Abrams, J. Vac. Sci. Technol. A 16, 913 (1998).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2004

Authors and Affiliations

  • S. A. Gavrilov
    • 1
  • N. N. Dzbanovsky
    • 2
  • É. A. Il’ichev
    • 1
  • P. V. Minakov
    • 2
  • É. A. Poltoratsky
    • 1
    • 2
  • G. S. Rychkov
    • 1
  • N. V. Suetin
    • 2
  1. 1.Lukin Research Institute of Physical ProblemsMoscowRussia
  2. 2.Nuclear Physics InstituteMoscow State UniversityVorob’evy Gory, MoscowRussia

Personalised recommendations