Journal of Experimental and Theoretical Physics

, Volume 97, Issue 6, pp 1240–1245 | Cite as

Statistical analysis of low-voltage electron emission from nanocarbon cathodes

  • Al. A. Zakhidov
  • A. N. Obraztsov
  • A. P. Volkov
  • D. A. Lyashenko
Solids Electronic Properties


The current-voltage (IV) characteristics of low-voltage electron emission from nanocarbon (nC) film cathodes consisting of carbon nanotubes and/or nanosized graphite crystallites is analyzed. It is shown that an adequate qualitative description of the IV characteristics can be obtained within the classical Fowler-Nordheim (FN) theory with regard to the normal statistical distribution of the parameters of emission sites situated on the cathode surface. However, the application of this classical theory to obtain quantitative estimates leads to a considerable discrepancy between the results obtained and experimental data. A quantitative agreement between experimental data and theoretical results can be achieved under the assumption that the effective areas of emission sites increase at the expense of the lateral surfaces of nC structures.


Graphite Field Theory Carbon Nanotubes Expense Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Dobretsov and M. V. Gomoyunova, Emission Electronics (Nauka, Moscow, 1966; Israel Program for Sci. Transl., Jerusalem, 1971).Google Scholar
  2. 2.
    R. Gomer, Field Emission and Field Ionization (AIP, New York, 1993).Google Scholar
  3. 3.
    A. V. Eletskii, Usp. Fiz. Nauk 172, 401 (2002) [Phys. Usp. 45, 369 (2002)].Google Scholar
  4. 4.
    A. N. Obraztsov, A. P. Volkov, A. I. Boronin, and S. V. Koshcheev, Zh. Éksp. Teor. Fiz. 120, 970 (2001) [JETP 93, 846 (2001)].Google Scholar
  5. 5.
    V. D. Frolov, A. V. Karabutov, S. M. Pimenov, et al., Diamond Relat. Mater. 10, 1719 (2001).Google Scholar
  6. 6.
    A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, et al., Carbon 41, 836 (2003).CrossRefGoogle Scholar
  7. 7.
    J.-M. Bonard, H. Kind, Th. Stöckli, and L.-O. Nilsson, Solid-State Electron. 45, 893 (2001).CrossRefGoogle Scholar
  8. 8.
    A. N. Obraztsov, I. Yu. Pavlovsky, and A. P. Volkov, J. Vac. Sci. Technol. B 17, 674 (1999).CrossRefGoogle Scholar
  9. 9.
    J. D. Levine, J. Vac. Sci. Technol. B 13, 553 (1995).Google Scholar
  10. 10.
    V. T. Binh and Ch. Adessi, Phys. Rev. Lett. 85, 864 (2000).CrossRefADSGoogle Scholar
  11. 11.
    A. N. Obraztsov, A. P. Volkov, and I. Yu. Pavlovskii, Pis’ma Zh. Éksp. Teor. Fiz. 68, 56 (1998) [JETP Lett. 68, 59 (1998)].Google Scholar
  12. 12.
    A. N. Obraztsov, A. P. Volkov, I. Yu. Pavlovskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 381 (1999) [JETP Lett. 69, 411 (1999)].Google Scholar
  13. 13.
    Z. L. Wang, R. P. Gao, W. A. de Heer, and P. Poncharal, Appl. Phys. Lett. 80, 856 (2002).ADSGoogle Scholar
  14. 14.
    J. Cumings, A. Zettl, M. R. McCaetney, and J. C. H. Spence, Phys. Rev. Lett. 88, 056804 (2002).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • Al. A. Zakhidov
    • 1
  • A. N. Obraztsov
    • 1
  • A. P. Volkov
    • 1
  • D. A. Lyashenko
    • 1
  1. 1.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations