Journal of Experimental and Theoretical Physics

, Volume 97, Issue 6, pp 1168–1185 | Cite as

Bubble motion in inclined pipes

  • N. A. Inogamov
  • A. M. Oparin


Highly nonlinear free-surface flows in vertical, inclined, and horizontal pipes are analyzed. The problem of bubble motion in a vertical pipe is closely related to the Rayleigh-Taylor instability problem. Inclined pipe flows are intensively studied as related to gas and oil transportation. A new theory of motion of large bubbles in pipes is developed. As distinct from previous approaches, which relied on semiempirical methods or numerical fitting, analytical methods of potential theory and complex analysis are used. A careful comparison of 2D and 3D solutions is presented. It is shown that a higher dimensionality may not correspond to a higher bubble velocity. For the first time, free-surface flows in inclined pipes are analyzed by means of direct numerical simulation, which makes it possible to develop a new approach to the Rayleigh-Taylor instability problem (bubbles with wedge-and cone-shaped noses).


Direct Numerical Simulation Potential Theory Previous Approach High Dimensionality Pipe Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. B. Wallis, One-Dimensional Two-Phase Flow (McGraw-Hill, New York, 1969).Google Scholar
  2. 2.
    I. N. Alves, O. Shoham, and Y. Taitel, Chem. Eng. Sci. 48, 3063 (1993).Google Scholar
  3. 3.
    K. H. Bendiksen, Int. J. Multiphase Flow 10, 467 (1984).CrossRefGoogle Scholar
  4. 4.
    K. H. Bendiksen, Int. J. Multiphase Flow 11, 797 (1985).CrossRefzbMATHGoogle Scholar
  5. 5.
    R. I. Nigmatulin, in Proceedings of International Conference on Dynamics of Multiphase Systems, ICMS 2000, Ed. by M. Ilgamov, I. Akhatov, and S. Urmancheev (Ufa, 2000), p. 1.Google Scholar
  6. 6.
    E. E. Zukoski, J. Fluid Mech. 25, 821 (1966).ADSGoogle Scholar
  7. 7.
    R. H. Bonnecaze, W. Eriskine, Jr., and E. J. Greskovich, Am. Inst. Chem. Eng. J. 17, 1109 (1971).Google Scholar
  8. 8.
    C. C. Maneri and N. Zuber, Int. J. Multiphase Flow 1, 623 (1974).CrossRefGoogle Scholar
  9. 9.
    A. R. Hasan and C. S. Kabir, SPE Prod. Facil. 144, 56 (1999).Google Scholar
  10. 10.
    G. É. Odishariya and A. A. Tochigin, Applied Hydrodynamics of Gas-Liquid Mixtures (Vseross. Nauchno-Issled. Inst. Prirod. Gazov Gazovykh Tekhnol., Ivanov. Gos. Énerg. Univ., 1998).Google Scholar
  11. 11.
    P. Vigneaux, P. Chenais, and J. P. Hulin, Am. Inst. Chem. Eng. J. 34, 781 (1988).Google Scholar
  12. 12.
    R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987).Google Scholar
  13. 13.
    L. Mattar and G. A. Gregory, J. Can. Petr. Technol. 13, 69 (1974).Google Scholar
  14. 14.
    M. K. Nicholson, K. Aziz, and G. A. Gregory, Can. J. Chem. Eng. 56, 653 (1978).Google Scholar
  15. 15.
    D. M. Maron, N. Yacoub, and N. Brauner, Lett. Heat Mass Transfer 9, 333 (1982).CrossRefGoogle Scholar
  16. 16.
    H.-J. Kull, Phys. Rep. 206, 197 (1991).CrossRefADSGoogle Scholar
  17. 17.
    N. A. Inogamov, A. Yu. Dem’yanov, and É. E. Son, Hydrodynamics of Mixing (Mosk. Fiz.-Tekh. Inst., Moscow, 1999).Google Scholar
  18. 18.
    N. A. Inogamov, Astrophys. Space Phys. Rev. 10, 1 (1999).ADSGoogle Scholar
  19. 19.
    T. B. Benjamin, J. Fluid Mech. 31, 209 (1968).ADSzbMATHGoogle Scholar
  20. 20.
    D. T. Dumitrescu, Z. Angew. Math. Mech. 23, 139 (1943).MathSciNetGoogle Scholar
  21. 21.
    R. M. Davies and G. I. Taylor, Proc. R. Soc. London, Ser. A 200, 375 (1950).ADSGoogle Scholar
  22. 22.
    D. Layzer, Astrophys. J. 122, 1 (1955).ADSMathSciNetGoogle Scholar
  23. 23.
    N. A. Inogamov and A. M. Oparin, Zh. Éksp. Teor. Fiz. 116, 908 (1999) [JETP 89, 481 (1999)].Google Scholar
  24. 24.
    J. Hecht, U. Alon, and D. Shvarts, Phys. Fluids 6, 4019 (1994).CrossRefADSGoogle Scholar
  25. 25.
    N. A. Inogamov and A. Yu. Dem’yanov, Prikl. Mekh. Tekh. Fiz. 37, 93 (1996).Google Scholar
  26. 26.
    J.-M. Vanden-Broeck, Phys. Fluids A 5, 2454 (1993).CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    N. A. Inogamov, M. Tricottet, A. M. Oparin, and S. Bouquet, Phys. Lett. A (2003) (in press); physics/0104084.Google Scholar
  28. 28.
    A. I. D’yachenko, Dokl. Akad. Nauk 376, 27 (2001).MathSciNetGoogle Scholar
  29. 29.
    V. E. Zakharov and A. I. Dyachenko, Physica D (Amsterdam) 98, 652 (1996).MathSciNetGoogle Scholar
  30. 30.
    A. L. Velikovich and G. Dimonte, Phys. Rev. Lett. 76, 3112 (1996).CrossRefADSGoogle Scholar
  31. 31.
    Q. Zhang and S.-I. Sohn, Z. Angew. Math. Phys. 50, 1 (1999).CrossRefMathSciNetGoogle Scholar
  32. 32.
    M. Berning and A. M. Rubenchik, Phys. Fluids 10, 1564 (1998).CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    C.-S. Yih, Stratified Flows (Academic, New York, 1980).Google Scholar
  34. 34.
    V. V. Bychkov, Phys. Rev. E 55, 6898 (1997).CrossRefADSGoogle Scholar
  35. 35.
    E. A. Kuznetsov and S. S. Minaev, Phys. Lett. A 221, 187 (1996).CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    S. F. Shandarin and Ya. B. Zeldovich, Rev. Mod. Phys. 61, 185 (1989).CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    L. Kofman, D. Pogosyan, and S. Shandarin, Mon. Not. R. Astron. Soc. 242, 200 (1990).ADSGoogle Scholar
  38. 38.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953, Nauka, Moscow, 1973).Google Scholar
  39. 39.
    O. M. Belotserkovskii, Numerical Simulation in Mechanics of Continuous Media (Fizmatlit, Moscow, 1994).Google Scholar
  40. 40.
    O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment in Turbulence (Nauka, Moscow, 2000).Google Scholar
  41. 41.
    N. A. Inogamov, A. M. Oparin, A. Yu. Dem’yanov, et al., Zh. Éksp. Teor. Fiz. 119, 822 (2001) [JETP 92, 715 (2001)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • N. A. Inogamov
    • 1
  • A. M. Oparin
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute for Computer-Aided DesignRussian Academy of SciencesMoscowRussia

Personalised recommendations