Physics of Atomic Nuclei

, Volume 66, Issue 12, pp 2178–2182 | Cite as

Neutron-antineutron oscillations in the trapping box

  • B. O. Kerbikov
Elementary Particles and Fields Theory


The problem of n-\(\bar n\) oscillations for ultracold neutrons confined within a trap is reexamined. It is shown that the growth of the \(\bar n\) component with time is to a decent accuracy given by \(P(\bar n) = \varepsilon _{n\bar n}^2 t_L t\), where \(\varepsilon _{n\bar n}\) is the mixing parameter and t L ∼ 1 s is the neutron propagation time between subsequent collisions with the trap walls. Possible corrections to this law and open questions are discussed.


Elementary Particle Propagation Time Neutron Propagation Ultracold Neutron Subsequent Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Kuzmin, Pis'ma Zh. Éksp. Teor. Fiz. 12, 335 (1970) [JETP Lett. 13, 335 (1970)].Google Scholar
  2. 2.
    K. G. Chetyrkin et al., Phys. Lett. B 99B, 358 (1981).MathSciNetADSGoogle Scholar
  3. 3.
    M. Baldo-Ceolin, in Festischrift for Val Telegdi, Ed. by K. Winter (Elsevier, Amsterdam, 1988), p. 17.Google Scholar
  4. 4.
    A. Gal, Phys. Rev. C 61, 028201 (2000).Google Scholar
  5. 5.
    Yu. G. Abov, F. S. Dzheparov, and L. B. Okun, Pis'ma Zh. Éksp. Teor. Fiz. 39, 493 (1984) [JETP Lett. 39, 599 (1984)].Google Scholar
  6. 6.
    R. Golub, in Proceedings of the International Workshop on Future Prospects of Baryon Instability Search, Oak Ridge, 1996, Ed. by S. J. Ball and Y. A. Kamyshkov, p. 329.Google Scholar
  7. 7.
    Ya. B. Zeldovich, Zh. Éksp. Teor. Fiz. 36, 1952 (1959).Google Scholar
  8. 8.
    V. K. Ignatovich, The Physics of Ultracold Neutrons (Nauka, Moscow, 1986) [in Russian], p. 228.Google Scholar
  9. 9.
    Ye. S. Golubeva and L. A. Kondratyuk, Nucl. Phys. B (Proc. Suppl.) 56, 103 (1997).CrossRefADSGoogle Scholar
  10. 10.
    M. Baldo-Ceolin et al., Z. Phys. C 63, 409 (1994).CrossRefGoogle Scholar
  11. 11.
    J. Chung et al., Phys. Rev. D 66, 032004 (2002).Google Scholar
  12. 12.
    A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962), Vol. 1.Google Scholar
  13. 13.
    M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964).Google Scholar
  14. 14.
    V. M. Galitsky, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics (Nauka, Moscow, 1992) [in Russian].Google Scholar
  15. 15.
    I. M. Frank, Usp. Fiz. Nauk 161(11), 109 (1991).Google Scholar
  16. 16.
    I. Yu. Kobzarev, N. N. Nikolaev, and L. B. Okun, Yad. Fiz. 10, 864 (1969).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • B. O. Kerbikov
    • 1
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations