Advertisement

Surface tension of pure liquid helium isotopes

  • A. M. Dyugaev
  • P. D. Grigoriev
Condensed Matter

Abstract

The effects caused by vapor inhomogeneity over liquid helium are considered. Both pure isotopes have surface levels, whose population increases with temperature T. We separated their contribution to the temperature dependence of surface tension σ3(T) and σ4(T) and compared our theoretical results with the results of Japanese experimental works [1–3]. For liquid He3, one has σ3(T)=σ3(0)−σ 3 T2 at 0.2 K<T<1 K and σ3(T)=σ3(0)−α 3 0 T2exp(−Δ3/T) at T<0.2 K, with Δ3≈0.25 K. For liquid He4, σ4(T)=σ4(0)−AT7/3− α 4 0 T2exp(−Δ4/T) at T<2 K, where A is the Atkins constant and Δ4≈4 K. The parameters α 3 0 , α 3 , and α 4 0 depend on the fluid properties.

PACS numbers

67.55.Cx 68.03.Cd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Iino, M. Suzuki, and A. J. Ikushima, J. Low Temp. Phys. 61, 155 (1985).CrossRefGoogle Scholar
  2. 2.
    M. Iino, M. Suzuki, A. J. Ikushima, and Y. Okuda, J. Low Temp. Phys. 59, 291 (1985).CrossRefGoogle Scholar
  3. 3.
    M. Suzuki, Y. Okuda, A. J. Ikushima, and M. Iino, Europhys. Lett. 5, 333 (1988).ADSGoogle Scholar
  4. 4.
    K. Matsumoto, Y. Okuda, M. Suzuki, and S. Misawa, J. Low Temp. Phys. 125, 59 (2001).CrossRefGoogle Scholar
  5. 5.
    K. R. Atkins, Can. J. Phys. 31, 1165 (1953).zbMATHGoogle Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 3rd ed. (Nauka, Moscow, 1976; Pergamon Press, Oxford, 1980).Google Scholar
  7. 7.
    A. F. Andreev, Zh. Éksp. Teor. Fiz. 50, 1415 (1966) [Sov. Phys. JETP 23, 939 (1966)].Google Scholar
  8. 8.
    A. M. Dyugaev, J. Low Temp. Phys. 78, 79 (1990).CrossRefGoogle Scholar
  9. 9.
    A. M. Dyugaev, Sov. Sci. Rev., Sect. A 14, 1 (1990).Google Scholar
  10. 10.
    K. Shirahama, S. Ito, H. Suto, and K. Kono, J. Low Temp. Phys. 101, 439 (1995).Google Scholar
  11. 11.
    D. S. Greywall, Phys. Rev. B 27, 2747 (1983).CrossRefADSGoogle Scholar
  12. 12.
    F. Dalfovo and S. Stringari, J. Low Temp. Phys. 77, 307 (1989).CrossRefGoogle Scholar
  13. 13.
    S. Misawa, J. Low Temp. Phys. 125, 49 (2001).CrossRefGoogle Scholar
  14. 14.
    S. Misawa and H. Morita, Physica B (Amsterdam) 165, 643 (1990).ADSGoogle Scholar
  15. 15.
    H. Esbensen and G. F. Bertsch, Phys. Rev. Lett. 52, 2257 (1984).CrossRefADSGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 5th ed. (Nauka, Moscow, 2001; Pergamon, New York, 1987).Google Scholar
  17. 17.
    L. S. Reut and I. Z. Fisher, Zh. Éksp. Teor. Fiz. 60, 1814 (1971) [Sov. Phys. JETP 33, 981 (1971)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • A. M. Dyugaev
    • 1
    • 2
  • P. D. Grigoriev
    • 1
    • 3
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Max-Planck-Institut for the Physics of Complex SystemsDresdenGermany
  3. 3.High Magnetic Field LaboratoryMPI-FRF and CNRS, BP166GrenobleFrance

Personalised recommendations