Advertisement

Astronomy Letters

, Volume 29, Issue 12, pp 791–824 | Cite as

Turbulence in clusters of galaxies and X-ray line profiles

  • N. A. Inogamov
  • R. A. Sunyaev
Article

Abstract

Large-scale bulk motions and hydrodynamic turbulence in the intergalactic gas that fills clusters of galaxies significantly broaden X-ray emission lines. For lines of heavy ions (primarily helium-like and hydrogen-like iron ions), the hydrodynamic broadening is appreciably larger than the thermal broadening. Since clusters of galaxies have a negligible optical depth for resonant scattering in the forbidden and intercombination lines of these ions, these lines are not additionally broadened. At the same time, they are very intense, which allows deviations of the spectrum from the Gaussian spectrum in the line wings to be investigated. The line shape proves to be an important indicator of bulk hydrodynamic processes. Doppler probing of turbulence becomes possible, because the cryogenic detectors of the X-ray observatories now ready for launch and being planned will have a high energy resolution (from 5 eV for ASTRO-E2 to 1–2 eV for Constellation-X and XEUS). We use the spectral representation of a Kolmogorov cascade in the inertial range to calculate the characteristic shapes of radiation lines. Significant deviations in the line profiles from the Gaussian profile (shape asymmetry, additional peaks, sharp breaks in the exponential tails) are expected for large-scale turbulence. The kinematic SZ effect and the X-ray line profiles carry different information about the hydrodynamic velocity distribution in clusters of galaxies and complement each other, allowing the redshift, the peculiar velocity of the cluster, and the bulk velocity dispersion to be separated.

Key words

turbulence clusters of galaxies intergalactic gas X-ray line spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Churazov, M. Brueggen, C. R. Kaiser, et al., Astrophys. J. 554, 261 (2001).CrossRefADSGoogle Scholar
  2. 2.
    E. Churazov, R. Sunyaev, W. Forman, and H. Boehringer, Mon. Not. R. Astron. Soc. 332, 729 (2002).CrossRefADSGoogle Scholar
  3. 3.
    E. Churazov, W. Forman, C. Jones, et al., Mon. Not. R. Astron. Soc. (2003, in press); astro-ph/0309427.Google Scholar
  4. 4.
    A. C. Fabian, J. S. Sanders, C. S. Crawford, et al., Mon. Not. R. Astron. Soc. 344, L48 (2003).ADSGoogle Scholar
  5. 5.
    C. S. Frenk, S. D. M. White, P. Bode, et al., Astrophys. J. 525, 554 (1999).CrossRefADSGoogle Scholar
  6. 6.
    J. P. Ge and F. N. Owen, Astron. J. 105, 778 (1993).CrossRefADSGoogle Scholar
  7. 7.
    M. R. Gilfanov, R. A. Sunyaev, and E. M. Churazov, Sov. Astron. Lett. 13, 3 (1987).ADSGoogle Scholar
  8. 8.
    V. V. Ivanov, Radiative Transfer and the Spectra of Celestial Bodies (Nat. Bureau of Standards, Washington, 1973), Spec. Publ., no. 385.Google Scholar
  9. 9.
    R. K. Janev, L. P. Presnyakov, and V. P. Shevelko, Physics of Highly Charged Ions. Springer Series in Electrophysics (Springer, Berlin, 1985), Vol. 13.Google Scholar
  10. 10.
    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941).Google Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, Hydrodynamics (Nauka, Moscow, 1986).Google Scholar
  12. 12.
    Mathematical Encyclopaedia, Ed. by I. M. Vinogradov (Sov. Éntsiklopediya, Moscow, 1979), Vol. 2.Google Scholar
  13. 13.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965).Google Scholar
  14. 14.
    D. Nagai, A. Kravtsov, and A. Kosowsky, Astrophys. J. 587, 524 (2003).ADSGoogle Scholar
  15. 15.
    M. L. Norman and G. L. Bryan, The Radio Galaxy Messier 87, Ed. by H.-J. Roeser and K. Meisenheimer (Springer, Berlin, 1999), Lect. Notes Phys. 530, ISSN0075-8450.Google Scholar
  16. 16.
    F. S. Porter and K. Mitsuda (Astro-E2/XRS Collab.), American Astron. Soc. HEAD Meeting no. 35, no. 33.05 (2003).Google Scholar
  17. 17.
    M. N. Rosenbluth and R. Z. Sagdeev, Handbook of Plasma Physics (North-Holland, Amsterdam, 1983).Google Scholar
  18. 18.
    R. K. Smith, N. S. Brickhouse, D. A. Liedahl, and J. C. Raymond, Astrophys. J. 556, L91 (2001).ADSGoogle Scholar
  19. 19.
    R. A. Sunyaev, Pis’ma Astron. Zh. 3, 491 (1977) [Sov. Astron. Lett. 3, 268 (1977)].ADSGoogle Scholar
  20. 20.
    R. A. Sunyaev and Ya. B. Zeldovich, Astrophys. Space Sci. 7, 3 (1970).ADSGoogle Scholar
  21. 21.
    R. A. Sunyaev and Ya. B. Zeldovich, Mon. Not. R. Astron. Soc. 190, 413 (1980).ADSGoogle Scholar
  22. 22.
    R. Sunyaev, M. Norman, and G. Brian, Pis’ma Astron. Zh. 29, 883 (2003) [Astron. Lett. 29, 783 (2003)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • N. A. Inogamov
    • 1
    • 2
  • R. A. Sunyaev
    • 2
    • 3
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Max-Planck-Institut für AstrophysikGarchingGermany
  3. 3.Space Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations