Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure

  • V. V. Brazhkin
  • Y. Katayama
  • Y. Inamura
  • M. V. Kondrin
  • A. G. Lyapin
  • S. V. Popova
  • R. N. Voloshin
Condensed Matter


We present in situ (x-ray diffraction) and ex situ (quenching) structural studies of crystalline, liquid, and glassy B2O3 up to 9 GPa and 1700 K, drawing equilibrium and nonequilibrium phase diagrams of B2O3. Particularly, we have determined the melting curve, the stability regions for crystalline B2O3 I and B2O3 II modifications, the regions of transformations, such as densification or crystallization, for both the liquid and glassy states, including the region of sharp first-order-like transition in liquid B2O3 to a high-density phase near 7 GPa. Quenching experiments also show that the transition to the high-density liquid can occur at much lower pressures in nonstoichiometric melts with an excess of boron. B2O3 is the first glassformer whose transformations in the disordered state have been comparatively studied for both liquid and glassy phases.

PACS numbers

64.70.Kb 62.50.+p 61.43.−j 61.50.Ks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    New Kinds of Phase Transitions: Transformations in Disordered Substances, Ed. by V. V. Brazhkin, S. V. Buldyrev, V. N. Ryzhov, and H. E. Stanley (Kluwer, Dordrecht, 2002), NATO Sci. Ser. II: Math. Phys. Chem., Vol. 81.Google Scholar
  2. 2.
    O. Mishima and Y. Suzuki, Nature 419, 599 (2002).CrossRefADSGoogle Scholar
  3. 3.
    Y. Katayama, Gordon Research Conference on Research at High Pressure, Meriden, NH, USA (2002), private communication.Google Scholar
  4. 4.
    O. B. Tsiok, V. V. Brazhkin, A. G. Lyapin, and L. G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).CrossRefADSGoogle Scholar
  5. 5.
    F. S. El’kin, V. V. Brazhkin, L. G. Khvostantsev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 75, 413 (2002) [JETP Lett. 75, 342 (2002)].Google Scholar
  6. 6.
    J. Krong-Moe, J. Non-Cryst. Solids 1, 269 (1969).Google Scholar
  7. 7.
    G. E. Gurr, P. W. Montgomery, C. D. Knutson, and B. T. Gorres, Acta Crystallogr. B 26, 906 (1970).CrossRefGoogle Scholar
  8. 8.
    C. T. Prewitt and R. D. Shannon, Acta Crystallogr. B 24, 869 (1968).CrossRefGoogle Scholar
  9. 9.
    J. D. Mackenzie and W. F. Claussen, J. Am. Ceram. Soc. 44, 79 (1961).Google Scholar
  10. 10.
    F. Dachille and R. Roy, J. Am. Ceram. Soc. 41, 78 (1959).Google Scholar
  11. 11.
    D. R. Uhlmann, J. F. Hays, and D. Turnbull, Phys. Chem. Glasses 8, 1 (1967).Google Scholar
  12. 12.
    J. Swenson and L. Borjesson, Phys. Rev. B 55, 11138 (1997).Google Scholar
  13. 13.
    J. D. Mackenzie, J. Am. Ceram. Soc. 46, 461 (1963).Google Scholar
  14. 14.
    A. C. Wright, C. E. Stone, R. N. Sinclair, et al., Phys. Chem. Glasses 41, 296 (2000).Google Scholar
  15. 15.
    E. Chason and F. Spaepen, J. Appl. Phys. 64, 4435 (1988).CrossRefADSGoogle Scholar
  16. 16.
    Th. Gerber, B. Himmel, and J. Weigelt, J. Non-Cryst. Solids 126, 35 (1990).CrossRefGoogle Scholar
  17. 17.
    M. Misawa, J. Non-Cryst. Solids 122, 33 (1990).CrossRefGoogle Scholar
  18. 18.
    J. Diefenbacher and P. F. McMillan, J. Phys. Chem. A 105, 7973 (2001).CrossRefGoogle Scholar
  19. 19.
    V. V. Brazhkin and A. G. Lyapin, J. Phys.: Condens. Matter (in press).Google Scholar
  20. 20.
    M. Grimsditch, A. Polian, and A. C. Wright, Phys. Rev. B 54, 152 (1996).ADSGoogle Scholar
  21. 21.
    M. Grimsditch, R. Bhadra, and Y. Meng, Phys. Rev. B 38, 7836 (1988).CrossRefADSGoogle Scholar
  22. 22.
    K. Trachenko and M. T. Dove, J. Phys.: Condens. Matter 14, 7449 (2002).ADSGoogle Scholar
  23. 23.
    N. V. Surovtsev, J. Wiedersich, A. E. Batalov, et al., J. Chem. Phys. 113, 5891 (2000).CrossRefADSGoogle Scholar
  24. 24.
    M. A. Ramos, J. A. Moreno, S. Vieira, et al., J. Non-Cryst. Solids 221, 170 (1997).CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • V. V. Brazhkin
    • 1
  • Y. Katayama
    • 2
  • Y. Inamura
    • 2
  • M. V. Kondrin
    • 1
  • A. G. Lyapin
    • 1
  • S. V. Popova
    • 1
  • R. N. Voloshin
    • 1
  1. 1.Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia
  2. 2.Japan Atomic Energy Research Institute SPRING 8Sayo, HyogoJapan

Personalised recommendations