Superconducting spin filter

  • N. M. Chtchelkatchev
Condensed Matter


Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and the superconductor are grounded. In general, a finite current I2(V1, 0) is induced in grounded lead 2; its magnitude depends on the competition between processes of Andreev and normal quasiparticle transmission from lead 1 to lead 2. It is known that, in the tunneling limit, when normal leads are weakly coupled to the superconductor, I2(V1, 0)=0 if |V1|<Δ, and the system is in the clean limit. In other words, Andreev and normal tunneling processes compensate each other. We consider the general case: the voltages are below the gap, the system is either dirty or clean. It is shown that I2(V1, 0)=0 for general configuration of the normal leads; if the first lead injects spin-polarized current then I2=0, but spin current in lead 2 is finite. A XISIN structure, where X is a source of the spin-polarized current, could be applied as a filter separating spin current from charge current. We do an analytical progress calculating I1(V1, V2), I2(V1, V2).

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Deutscher and D. Feinberg, Appl. Phys. Lett. 76, 487 (2000).CrossRefADSGoogle Scholar
  2. 2.
    G. Falci, D. Feinberg, and F. W. J. Hekking, Europhys. Lett. 54, 225 (2001).CrossRefADSGoogle Scholar
  3. 3.
    R. Melin and D. Feinberg, Eur. Phys. J. B 26, 101 (2002).ADSGoogle Scholar
  4. 4.
    G. B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001); P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001); N. M. Chtchelkatchev, G. Blatter, G. B. Lesovik, et al., Phys. Rev. B 66, 161320 (2002); M. S. Choi, C. Bruder, and D. Loss, Phys. Rev. B 62, 1356 9 (2000).CrossRefADSGoogle Scholar
  5. 5.
    F. J. Jedema, B. J. van Wees, B. H. Hoving, et al., Phys. Rev. B 60, 16549 (1999).Google Scholar
  6. 6.
    D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computations (Springer, Berlin, 2000).Google Scholar
  7. 7.
    F. Giazotto, F. Taddei, R. Fazio, et al., Appl. Phys. Lett. 82, 2449 (2003).CrossRefADSGoogle Scholar
  8. 8.
    C. J. Lambert, J. Phys. C 3, 6579 (1991); Y. Takane and H. Ebisawa, J. Phys. Soc. Jpn. 61, 1685 (1992).MathSciNetGoogle Scholar
  9. 9.
    M. P. Anantram and S. Datta, Phys. Rev. B 53, 16390 (1996).Google Scholar
  10. 10.
    Ya. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).CrossRefADSGoogle Scholar
  11. 11.
    A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).Google Scholar
  12. 12.
    M. Bozović and Z. Radović, Phys. Rev. B 66, 134524 (2002).Google Scholar
  13. 13.
    Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, Oxford, 1997).Google Scholar
  14. 14.
    F. W. Hekking and Yu. V. Nazarov, Phys. Rev. B 49, 6847 (1994).CrossRefADSGoogle Scholar
  15. 15.
    N. M. Chtchelkatchev and I. Burmistrov, cond-mat/0303014.Google Scholar
  16. 16.
    D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).CrossRefADSGoogle Scholar
  17. 17.
    D. Feinberg, G. Deutscher, G. Falci, et al., in Proceedings of Rencontres de Moriond 2001, Ed. by T. Martin, G. Montambaux, and J. Tran Thanh Van (EDP Sciences, 2001), p. 535.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • N. M. Chtchelkatchev
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia

Personalised recommendations