Destruction of a solid film under the action of ultrashort laser pulse

  • S. I. Anisimov
  • V. V. Zhakhovskii
  • N. A. Inogamov
  • K. Nishihara
  • A. M. Oparin
  • Yu. V. Petrov
Plasma, Gases


Molecular-dynamics (MD) simulation of the destruction of a crystal film heated by a femtosecond laser pulse was carried out. Heating is assumed to be instantaneous, because there is no time for the material to be displaced during the pulse. Film destruction is caused by the interaction of unloading waves. It can be considered as a model of a more complex process of splitting out of a thin surface layer from a massive target in the case where the layer remains solid after heating. It was found that the crystal order is broken due to the stretching strains and to the strong anisotropy of residual stress, resulting in a bipartition of the layer separating from the target. The lattice stretching and the formation of anisotropic stresses are due to the expansion of a heated lattice.

PACS numbers

61.80.Ba 68.60.Dv 79.20.Ds 81.40.Vw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Impact of High Power Radiation on Metals (Nauka, Moscow, 1970).Google Scholar
  2. 2.
    S. I. Anisimov and B. S. Luk’yanchuk, Usp. Fiz. Nauk 172, 301 (2002).Google Scholar
  3. 3.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, et al., Phys. Rev. Lett. 81, 224 (1998).ADSGoogle Scholar
  4. 4.
    D. von der Linde and K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 1 (2000).Google Scholar
  5. 5.
    L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 1281 (2000).CrossRefADSGoogle Scholar
  6. 6.
    F. Vidal, T. W. Johnston, S. Laville, et al., Phys. Rev. Lett. 86, 2573 (2001).ADSGoogle Scholar
  7. 7.
    D. Perez and L. J. Lewis, Phys. Rev. Lett. 89, 255504 (2002).Google Scholar
  8. 8.
    Laser Ablation in Materials Processing: Fundamentals and Applications, Ed. by B. Braren, J. J. Dubowski, and D. P. Norton; Mater. Res. Soc. Symp. Proc. 285 (1993).Google Scholar
  9. 9.
    R. J. Beuhler, J. Appl. Phys. 54, 4118 (1983).CrossRefADSGoogle Scholar
  10. 10.
    Sh. Akhunov, S. N. Morozov, and U. Kh. Rasulev, Nucl. Instrum. Methods Phys. Res. B (2003) (in press).Google Scholar
  11. 11.
    N. A. Inogamov, Pis’ma Zh. Tekh. Fiz. 10, 769 (1984) [Sov. Tech. Phys. Lett. 10, 323 (1984)].Google Scholar
  12. 12.
    A. I. Akishin, V. P. Kiryukhin, L. S. Novikov, et al., Zh. Tekh. Fiz. 54(1), 179 (1984) [Sov. Phys. Tech. Phys. 29, 102 (1984)].Google Scholar
  13. 13.
    S. I. Ashitkov, M. B. Agranat, P. S. Kondratenko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 538 (2002) [JETP Lett. 76, 461 (2002)].Google Scholar
  14. 14.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. I. Anisimov, Phys. Rev. B 65, 092103 (2002).Google Scholar
  15. 15.
    N. M. Bulgakova and A. V. Bulgakov, Appl. Phys. A 73, 199 (2001).ADSGoogle Scholar
  16. 16.
    A. Miotello and R. Kelly, Appl. Phys. A (Suppl.) 69, S67 (1999).ADSGoogle Scholar
  17. 17.
    N. A. Inogamov, S. I. Anisimov, and B. Rethfeld, Zh. Éksp. Teor. Fiz. 115, 2091 (1999) [JETP 88, 1143 (1999)].Google Scholar
  18. 18.
    N. A. Inogamov, A. M. Oparin, Yu. V. Petrov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 284 (1999) [JETP Lett. 69, 310 (1999)].Google Scholar
  19. 19.
    V. V. Zhakhovskii, S. I. Anisimov, K. Nishikhara, and N. A. Inogamov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 241 (2000) [JETP Lett. 71, 167 (2000)].Google Scholar
  20. 20.
    S. I. Anisimov, A. M. Bonch-Bruevich, M. A. El’yashevich, et al., Zh. Tekh. Fiz. 36, 1273 (1966) [Sov. Phys. Tech. Phys. 11, 945 (1966)].Google Scholar
  21. 21.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Zh. Éksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].ADSGoogle Scholar
  22. 22.
    S. I. Anisimov and B. Rethfeld, Proc. SPIE 3093, 192 (1996).ADSGoogle Scholar
  23. 23.
    B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, Phys. Rev. B 65, 214303 (2002).Google Scholar
  24. 24.
    V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].Google Scholar
  25. 25.
    V. V. Zhakhovskii, S. V. Zybin, K. Nishihara, and S. I. Anisimov, Phys. Rev. Lett. 83, 1175 (1999).ADSGoogle Scholar
  26. 26.
    F. H. Ree, J. Chem. Phys. 73, 5401 (1980).ADSGoogle Scholar
  27. 27.
    Y. Choi, T. Ree, and F. H. Ree, J. Chem. Phys. 99, 9917 (1993).ADSGoogle Scholar
  28. 28.
    B. Smit, J. Chem. Phys. 96, 8639 (1992).CrossRefADSGoogle Scholar
  29. 29.
    V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermophysical Properties of Neon, Argon, Krypton, and Xenon (Hemisphere, Berlin, 1998).Google Scholar
  30. 30.
    G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Impact-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).Google Scholar
  31. 31.
    S. I. Anisimov, A. V. Bushman, R. Z. Sagdeev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 39, 9 (1984) [JETP Lett. 39, 8 (1984)].Google Scholar
  32. 32.
    Kh. A. Rakhmatulin and Yu. A. Dem’yanov, Solidity at Intensive Short-Time Loads (Fizmatgiz, Moscow, 1961).Google Scholar
  33. 33.
    V. S. Nikiforovskii and E. I. Shemyakin, Dynamical Destruction of Solids (Nauka, Novosibirsk, 1979).Google Scholar
  34. 34.
    N. Kh. Akhmadeev, Dynamical Destruction of Solids in Stress Waves (BNTs Ural. Otd. Akad. Nauk SSSR, Ufa, 1988).Google Scholar
  35. 35.
    V. N. Aptukov, P. K. Nikolaev, and A. A. Pozdeev, Dokl. Akad. Nauk SSSR 283, 862 (1985) [Sov. Phys. Dokl. 30, 705 (1985)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • S. I. Anisimov
    • 1
  • V. V. Zhakhovskii
    • 2
    • 3
  • N. A. Inogamov
    • 1
  • K. Nishihara
    • 3
  • A. M. Oparin
    • 4
  • Yu. V. Petrov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Institute of High Temperatures Scientific Association (IVTAN)Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Laser EngineeringOsaka UniversitySuita, OsakaJapan
  4. 4.Institute of Design AutomationRussian Academy of SciencesMoscowRussia

Personalised recommendations