Multiparameter family of collapsing solutions to the critical nonlinear Schrödinger equation in dimension D=2

  • Yu. N. Ovchinnikov
  • I. M. Sigal
Nonlinear Physics


We consider the critical nonlinear Schrödinger equation in dimension D=2 and obtain a system consisting of three equations describing the collapse of solutions. The system admits a five-parameter family of solutions. Almost everywhere, except for an exponentially narrow region near the collapse point, the tunneling processes are negligible. The relation between initial data and the condition of occurrence of the collapse is investigated. The separatrix, which divides the collapse domain and expansion regions having no singularities in a finite time interval, is found.


Spectroscopy State Physics Field Theory Elementary Particle Initial Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Talanov, Pis’ma Zh. Éksp. Teor. Fiz. 2, 218 (1965) [JETP Lett. 2, 138 (1965)].Google Scholar
  2. 2.
    P. L. Keley, Phys. Rev. Lett. 15, 1005 (1965).ADSGoogle Scholar
  3. 3.
    A. L. Dyshko, V. N. Lugovoi, and A. M. Prokhorov, Pis’ma Zh. Éksp. Teor. Fiz. 6, 665 (1967) [JETP Lett. 6, 153 (1967)].Google Scholar
  4. 4.
    E. Dawes and J. H. Marburger, Phys. Rev. 179, 862 (1969).CrossRefADSGoogle Scholar
  5. 5.
    V. I. Talanov, Pis’ma Zh. Éksp. Teor. Fiz. 11, 303 (1970) [JETP Lett. 11, 199 (1970)].Google Scholar
  6. 6.
    V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1746 (1972) [Sov. Phys. JETP 35, 908 (1972)].Google Scholar
  7. 7.
    G. M. Fraimen, Zh. Éksp. Teor. Fiz. 88, 390 (1985) [Sov. Phys. JETP 61, 228 (1985)].ADSGoogle Scholar
  8. 8.
    V. E. Zakharov and V. F. Shvets, Pis’ma Zh. Éksp. Teor. Fiz. 47, 227 (1988) [JETP Lett. 47, 275 (1988)].ADSGoogle Scholar
  9. 9.
    M. J. Landman, G. C. Papanicolaou, C. Sulem, and P.-L. Sulem, Phys. Rev. A 38, 3837 (1988).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    N. E. Kosmatov, V. F. Shvets, and V. E. Zakharov, Physica D (Amsterdam) 52, 16 (1991).ADSGoogle Scholar
  11. 11.
    B. J. Le Mesurier, G. C. Papanicolaou, C. Sulem, and P.-L. Sulem, in Directions in Partial Differential Equations, Ed. by M. G. Grandall, P. H. Rabinovitz, and R. E. Tuner (Academic, Boston, 1987), p. 159.Google Scholar
  12. 12.
    C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse (Springer, New York, 1999).Google Scholar
  13. 13.
    A. I. Smirnov and G. M. Fraiman, Physica D (Amsterdam) 52, 2 (1991).ADSMathSciNetGoogle Scholar
  14. 14.
    V. M. Malkin, Phys. Lett. A 151, 285 (1990).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. Pelinovsky, Physica D (Amsterdam) 119, 801 (1998).MathSciNetGoogle Scholar
  16. 16.
    M. I. Weinstein, Commun. Math. Phys. 87, 567 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    G. Perelman, in Nonlinear Dynamics and Renormalization Group, Ed. by I. M. Sigal and C. Sulem (American Mathematical Society, Providence, R.I., 2001), CRM Proceedings and Lecture Notes, Vol. 27, p. 147.Google Scholar
  18. 18.
    L. Berge, Phys. Rep. 303, 259 (1998).ADSMathSciNetGoogle Scholar
  19. 19.
    V. N. Vlasov, I. A. Petrishchev, and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 14, 1353 (1971).Google Scholar
  20. 20.
    Yu. N. Ovchinnikov and I. M. Sigal, Pis’ma Zh. Éksp. Teor. Fiz. 75, 428 (2002) [JETP Lett. 75, 357 (2002)].Google Scholar
  21. 21.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 2nd ed. (Fizmatgiz, Moscow, 1963; Pergamon, New York, 1977).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • Yu. N. Ovchinnikov
    • 1
    • 2
  • I. M. Sigal
    • 3
  1. 1.Max-Planck Institute for Physics of Complex SystemsDresdenGermany
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Department of MathematicsUniversity of TorontoOntarioCanada

Personalised recommendations