Decoherence due to nodal quasiparticles in d-wave qubits

  • Ya. V. Fominov
  • A. A. Golubov
  • M. Yu. Kupriyanov
Condensed Matter

Abstract

We study the Josephson junction between two d-wave superconductors, which is discussed as an implementation of a qubit. We propose an approach to calculate the decoherence time due to an intrinsic dissipative process: quantum tunneling between the two minima of the double-well potential excites nodal quasiparticles, which lead to incoherent damping of quantum oscillations. The decoherence is weakest in the mirror junction, where the contribution of nodal quasiparticles corresponds to the superohmic dissipation and becomes small at small tunnel splitting of the energy level in the double-well potential. For available experimental data, we estimate the quality factor.

PACS numbers

74.50.+r 85.25.Cp 03.67.Pp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001); G. Blatter, V. B. Geshkenbein, and L. B. Ioffe, Phys. Rev. B 63, 174511 (2001).CrossRefADSGoogle Scholar
  2. 2.
    L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, et al., Nature 398, 679 (1999); A. M. Zagoskin, cond-mat/9903170 (1999); A. Blais and A. M. Zagoskin, Phys. Rev. A 61, 042308 (2000).Google Scholar
  3. 3.
    E. Il’ichev, M. Grajcar, R. Hlubina, et al., Phys. Rev. Lett. 86, 5369 (2001).ADSGoogle Scholar
  4. 4.
    C. C. Tsuei, J. R. Kirtley, C. C. Chi, et al., Phys. Rev. Lett. 73, 593 (1994).CrossRefADSGoogle Scholar
  5. 5.
    M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).Google Scholar
  6. 6.
    U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. B 30, 6419 (1984).CrossRefADSGoogle Scholar
  7. 7.
    G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).CrossRefADSGoogle Scholar
  8. 8.
    C. Bruder, A. van Otterlo, and G. T. Zimanyi, Phys. Rev. B 51, 12904 (1995).Google Scholar
  9. 9.
    Yu. S. Barash, A. V. Galaktionov, and A. D. Zaikin, Phys. Rev. B 52, 665 (1995).ADSGoogle Scholar
  10. 10.
    A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).CrossRefADSGoogle Scholar
  11. 11.
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, et al., Rev. Mod. Phys. 59, 1 (1987).CrossRefADSGoogle Scholar
  12. 12.
    G. Eilenberger, Z. Phys. 214, 195 (1968).Google Scholar
  13. 13.
    N. Schopohl and K. Maki, Phys. Rev. B 52, 490 (1995); N. Schopohl, cond-mat/9804064 (1998).CrossRefADSGoogle Scholar
  14. 14.
    M. Grajcar, private communication.Google Scholar
  15. 15.
    A. Ya. Tzalenchuk, T. Lindström, S. A. Charlebois, et al., Phys. Rev. B (in press).Google Scholar
  16. 16.
    C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).ADSGoogle Scholar
  17. 17.
    Y. Tanaka and S. Kashiwaya, Phys. Rev. B 53, 9371 (1996); R. A. Riedel and P. F. Bagwell, Phys. Rev. B 57, 6084 (1998); Yu. S. Barash, Phys. Rev. B 61, 678 (2000); A. A. Golubov and M. Yu. Kupriyanov, Pis’ma Zh. Éksp. Teor. Fiz. 69, 242 (1999) [JETP Lett. 69, 262 (1999)]; A. Poenicke, Yu. S. Barash, C. Bruder, and V. Istyukov, Phys. Rev. B 59, 7102 (1999).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • Ya. V. Fominov
    • 1
    • 2
  • A. A. Golubov
    • 2
  • M. Yu. Kupriyanov
    • 3
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Applied PhysicsUniversity of TwenteEnschedeThe Netherlands
  3. 3.Nuclear Physics InstituteMoscow State UniversityMoscowRussia

Personalised recommendations