Advertisement

Weak turbulence of gravity waves

  • A. I. Dyachenko
  • A. O. Korotkevich
  • V. E. Zakharov
Plasma, Gases

Abstract

For the first time weak turbulent theory was demonstrated for surface gravity waves. Direct numerical simulation of the dynamical equations shows Kolmogorov turbulent spectra as predicted by analytical analysis [1] from kinetic equation.

PACS numbers

47.35.+i 92.10.Hm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Zakharov and N. N. Filonenko, Dokl. Akad. Nauk SSSR 170, 1292 (1966) [Sov. Phys. Dokl. 11, 881 (1966)].Google Scholar
  2. 2.
    V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 4, 506 (1967).Google Scholar
  3. 3.
    M. Yu. Brazhnikov, G. V. Kolmakov, A. A. Levchenko, and L. P. Mezhov-Deglin, Pis’ma Zh. Éksp. Teor. Fiz. 74, 660 (2001) [JETP Lett. 74, 583 (2001)].Google Scholar
  4. 4.
    M. Yu. Brazhnikov, G. V. Kolmakov, and A. A. Levchenko, Zh. Éksp. Teor. Fiz. 122, 521 (2002) [JETP 95, 447 (2002)].Google Scholar
  5. 5.
    A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).CrossRefADSGoogle Scholar
  6. 6.
    A. I. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, Physica D (Amsterdam) 57, 96 (1992).ADSMathSciNetGoogle Scholar
  7. 7.
    F. Dias, P. Guyenne, and V. E. Zakharov, Phys. Lett. A 291, 139 (2001).ADSMathSciNetGoogle Scholar
  8. 8.
    V. E. Zakharov, O. A. Vasilyev, and A. I. Dyachenko, Pis’ma Zh. Éksp. Teor. Fiz. 73, 68 (2001) [JETP Lett. 73, 63 (2001)].Google Scholar
  9. 9.
    Y. V. Lvov and E. G. Tabak, Phys. Rev. Lett. 87, 168501 (2001).Google Scholar
  10. 10.
    S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, Astrophys. J. 564, L49 (2002).CrossRefADSGoogle Scholar
  11. 11.
    S. L. Musher, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 252, 178 (1995).CrossRefADSGoogle Scholar
  12. 12.
    Y. Toba, J. Oceanogr. Soc. Jpn. 29, 209 (1973).Google Scholar
  13. 13.
    P. A. Hwang, D. W. Wang, E. J. Walsh, et al., J. Phys. Oceanogr. 30, 2753 (2000).Google Scholar
  14. 14.
    M. Onorato, A. R. Osborne, M. Serio, et al., Phys. Rev. Lett. 89, 144501 (2002).Google Scholar
  15. 15.
    A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 572 (2003) [JETP Lett. 77, 477 (2003)].Google Scholar
  16. 16.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 2, 190 (1968).Google Scholar
  17. 17.
    V. E. Zakharov, Eur. J. Mech. B/Fluids 18(3), 327 (1999).CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    V. E. Zakharov, G. Falkovich, and V. S. Lvov, Kolmogorov Spectra of Turbulence, Vol. 1: Wave Turbulence (Springer, Berlin, 1992).Google Scholar
  19. 19.
    V. E. Zakharov and M. M. Zaslavskii, Izv. Atmos. Ocean. Phys. 18, 747 (1982).Google Scholar
  20. 20.
    O. M. Phillips, J. Fluid Mech. 4, 426 (1958).ADSMATHMathSciNetGoogle Scholar
  21. 21.

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • A. I. Dyachenko
    • 1
  • A. O. Korotkevich
    • 1
  • V. E. Zakharov
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations