Advertisement

Optics and Spectroscopy

, Volume 95, Issue 1, pp 35–41 | Cite as

Depolarization of luminescence of polyatomic molecules in the gas phase as a method of determining the efficiency of collisional transfer of angular momentum

  • A. P. Blokhin
  • M. F. Gelin
  • I. I. Kalosha
  • V. V. Matylitskii
  • V. A. Tolkachev
Molecular Spectroscopy

Abstract

The theory of collisional depolarization of luminescence of extended polyatomic molecules in rarefiedgases is considered. The interrelation between the frequency of collisions, the relaxation time of the angular momentum, and the cross section of the luminescence depolarization is established, and the dependence of these parameters on the efficiency of an abrupt change in the angular momentum is calculated. The use of the theory of collisions of solids in the Enskog approximation made it possible to take into account the effect of the shape and mass of colliding molecules on the degree of depolarization. It is established that, in terms of this theory, there exists a limiting efficiency of an abrupt change in the angular momentum, which, however, does not attain the value proposed in the model of strong collisions (Jdiffusion). The dependence of the depolarization of luminescence of 1,4-di-(2-5-p-tolyloxazolyl) benzene molecules on the concentration of a buffer gas (argon) is measured. It is found that about five collisions with Ar atoms are required for randomization of the angular momentum of these molecules.

Keywords

Angular Momentum Polyatomic Molecule Strong Collision Smooth Sphere Orientational Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Gordon, Adv. Magn. Reson. 3, 1 (1968).Google Scholar
  2. 2.
    J. S. Baskin and A. H. Zewail, J. Phys. Chem. A 105, 3680 (2001).CrossRefGoogle Scholar
  3. 3.
    D. J. Cook, J. H. Chen, E. A. Marlino, and R. M. Hochstrasser, Chem. Phys. Lett. 309, 221 (1999).CrossRefGoogle Scholar
  4. 4.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, New York, 1995).Google Scholar
  5. 5.
    R. M. Hochstrasser, Chem. Phys. 266, 273 (2001).CrossRefGoogle Scholar
  6. 6.
    M. Dantus, Annu. Rev. Phys. Chem. 52, 639 (2001).CrossRefGoogle Scholar
  7. 7.
    R. E. D. McClung, Adv. Mol. Relax. Interact. Processes 10, 83 (1977).CrossRefGoogle Scholar
  8. 8.
    J. G. Powles and G. Rickayzen, Mol. Phys. 33, 1207 (1977).CrossRefADSGoogle Scholar
  9. 9.
    C. J. Jameson, Chem. Rev. 91, 1375 (1991).CrossRefGoogle Scholar
  10. 10.
    C. J. Jameson, A. K. Jameson, and M. A. Horst, J. Chem. Phys. 100, 1777 (1994).CrossRefADSGoogle Scholar
  11. 11.
    A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotations in Gases and Liquids (Nauka, Novosibirsk, 1982; Cambridge Univ. Press, Cambridge, 1994).Google Scholar
  12. 12.
    S. I. Temkin and A. I. Burshtein, J. Chem. Phys. 100, 1775 (1994).CrossRefADSGoogle Scholar
  13. 13.
    N. A. Borisevich, S. P. Pliska, and V. A. Tolkachev, Dokl. Akad. Nauk SSSR 261, 1109 (1981) [Sov. Phys. Dokl. 26, 1145 (1981)].Google Scholar
  14. 14.
    S. P. Pliska and V. A. Tolkachev, Zh. Prikl. Spektrosk. 50, 47 (1989).Google Scholar
  15. 15.
    S. P. Pliska, V. A. Povedailo, and V. A. Tolkachev, Zh. Prikl. Spektrosk. 56, 155 (1992).Google Scholar
  16. 16.
    A. P. Blokhin, M. F. Gelin, I. I. Kalosha, et al., Chem. Phys. 272, 69 (2001).CrossRefGoogle Scholar
  17. 17.
    P. P. Feofilov, The Physical Basis of Polarized Emission: Polarized Luminescence of Atoms, Molecules, and Crystals (Fizmatgiz, Moscow, 1959; Consultants Bureau, New York, 1961).Google Scholar
  18. 18.
    R. G. Gordon, J. Chem. Phys. 45, 1643 (1966).CrossRefADSGoogle Scholar
  19. 19.
    N. S. Golubev, N. D. Orlova, and R. Khamitov, Opt. Spektrosk. 62, 1005 (1987) [Opt. Spectrosc. 62, 594 (1987)].Google Scholar
  20. 20.
    M. Ridder, A. A. Suvernev, and T. Dreier, J. Chem. Phys. 105, 3376 (1996).CrossRefADSGoogle Scholar
  21. 21.
    J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. 102, 4158 (1998).Google Scholar
  22. 22.
    M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Adv. Chem. Phys. 83, 89 (1993).Google Scholar
  23. 23.
    V. M. Zhdanov and M. Ya. Alievskii, Transfer and Relaxation Processes in Molecular Gases (Nauka, Moscow, 1989).Google Scholar
  24. 24.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd ed. (Cambridge Univ. Press, Cambridge, 1970; Inostrannaya Literatura, Moscow, 1960).Google Scholar
  25. 25.
    D. Chandler, J. Chem. Phys. 60, 3500 (1974); J. Chem. Phys. 60, 3508 (1974).CrossRefADSGoogle Scholar
  26. 26.
    J. O’Dell and B. J. Berne, J. Chem. Phys. 63, 2376 (1975).CrossRefADSGoogle Scholar
  27. 27.
    G. T. Evans, J. Chem. Phys. 86, 3859 (1987).CrossRefADSGoogle Scholar
  28. 28.
    B. J. Berne, J. Chem. Phys. 66, 2821 (1977).CrossRefADSGoogle Scholar
  29. 29.
    A. P. Blokhin and M. F. Gelin, Mol. Phys. 87, 455 (1996).CrossRefADSGoogle Scholar
  30. 30.
    N. A. Borisevich, Excited States of Compound Molecules in Gas Phase (Nauka i Tekhnika, Minsk, 1967).Google Scholar
  31. 31.
    S. Dashman, Scientific Foundations of Vacuum Technique (Wiley, New York, 1962).Google Scholar
  32. 32.
    G. T. Evans, R. G. Cole, and D. K. Hoffman, J. Chem. Phys. 77, 3209 (1982).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • A. P. Blokhin
    • 1
  • M. F. Gelin
    • 1
  • I. I. Kalosha
    • 1
  • V. V. Matylitskii
    • 1
  • V. A. Tolkachev
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsBelarussian Academy of SciencesMinskBelarus

Personalised recommendations