Advertisement

Crystallography Reports

, Volume 48, Issue 4, pp 649–675 | Cite as

Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review)

  • V. V. Kochervinskii
Structure of Macromolecular Compounds. Review

Abstract

The piezoelectricity observed in poly(vinylidene fluoride) (PVDF) and its copolymers involves three components that are associated with the presence of at least two phases (crystalline and amorphous) in the polymer structure. The main contributions to the phenomenon observed are made by the size effect and electrostriction, which are related to each other. These contributions manifest themselves through the mechanism of strain-induced reversible transformations of a number of domains of the anisotropic amorphous phase into the crystalline state under the action of mechanical or electrical fields. With due regard for different packings of chains in the amorphous and crystalline phases, this mechanism accounts for the large Poisson ratios μ31 obtained for textured films of flexible-chain crystallizing polymers. The dependence of the piezoelectric coefficient d32 on the static stress in textured films is governed by the change in the fraction of the crystalline phase due to strong anisotropy of the elastic constants in the film plane. It is shown that the shear deformations of polymers are characterized by a strong piezoelectric response. The specific features revealed in the piezoelectric effect under bending deformations are described for films with an inhomogeneous distribution of polarization over the cross section. The general regularities of the electrostriction in the polymers and inorganic relaxor ferroelectrics studied are considered.

Keywords

PVDF Elastic Constant Shear Deformation Vinylidene Piezoelectric Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kawai, Jpn. J. Appl. Phys. 8, 975 (1969).Google Scholar
  2. 2.
    V. V. Kochervinskii, Usp. Khim. 63, 383 (1994).Google Scholar
  3. 3.
    The Application of Ferroelectric Polymers, Ed. by T. T. Wang, J. M. Herbert, and A. M. Glass (Blackie, Glasgow, 1988).Google Scholar
  4. 4.
    T. Furukawa, IEEE Trans. Electr. Insul. 24, 375 (1989).CrossRefGoogle Scholar
  5. 5.
    V. V. Kochervinskii, Usp. Khim. 65, 936 (1996).Google Scholar
  6. 6.
    E. Fukada and T. Furukawa, Ultrasonics, No. 1, 31 (1981).Google Scholar
  7. 7.
    V. V. Kochervinskii, Usp. Khim. 68, 904 (1999).Google Scholar
  8. 8.
    T. Yamada, J. Appl. Phys. 53, 6335 (1982).ADSGoogle Scholar
  9. 9.
    M. G. Broadhurst and G. T. Davies, in Electrets, Ed. by G. M. Sessler (Springer, Berlin, 1980; Mir, Moscow, 1983).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 4th ed. (Pergamon, New York, 1984; Nauka, Moscow, 1992).Google Scholar
  11. 11.
    K. Tashiro, H. Tadokoro, and M. Kobayashi, Ferroelectrics 32, 167 (1981).Google Scholar
  12. 12.
    K. Tashiro, H. Tadokoro, M. Kobayashi, and E. Fukada, Macromolecules 13, 691 (1980).Google Scholar
  13. 13.
    H. Dvey-Aharon, T. J. Sluckin, and P. L. Taylor, Ferroelectrics 32, 25 (1981).Google Scholar
  14. 14.
    M. G. Broadhurst and G. T. Davies, Ferroelectrics 60, 3 (1984).Google Scholar
  15. 15.
    H. Scheve, in IEEE 1982 Ultrasonics Symposium Proceedings (1982), Vol. 1, p. 519.Google Scholar
  16. 16.
    R. G. Kepler and R. A. Anderson, J. Appl. Phys. 49, 4918 (1978).ADSGoogle Scholar
  17. 17.
    T. Furukawa, J. Aiba, and E. Fukada, J. Appl. Phys. 50, 3615 (1979).ADSGoogle Scholar
  18. 18.
    S. Tasaka and S. Miyata, Ferroelectrics 32, 17 (1981).Google Scholar
  19. 19.
    H. Ohigashi, J. Appl. Phys. 47, 949 (1976).CrossRefADSGoogle Scholar
  20. 20.
    H. Sussner, Phys. Lett. A 58, 426 (1976).CrossRefADSGoogle Scholar
  21. 21.
    G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971).Google Scholar
  22. 22.
    E. Bellet-Amalric and J. F. Legrand, Eur. Phys. J. B 3, 225 (1998).CrossRefADSGoogle Scholar
  23. 23.
    K. Nakamura and Y. Wada, J. Polym. Sci. A2 9, 161 (1971).CrossRefGoogle Scholar
  24. 24.
    M. Oshiki and E. Fukada, J. Mater. Sci. 10, 1 (1975).CrossRefGoogle Scholar
  25. 25.
    S. Ikeda, H. Suzuki, and I. Maruyoshi, Rep. Prog. Polym. Phys. Jpn. 31, 387 (1988).Google Scholar
  26. 26.
    T. Watanabe, E. Uamaguchi, H. Suzuki, and S. Ikeda, Kobunshi Ronbunshu 49, 585 (1992).Google Scholar
  27. 27.
    S. Tasaka and S. Miyata, Kobunshi Ronbunshu 36, 689 (1979).Google Scholar
  28. 28.
    T. Furukawa and N. Seo, Jpn. J. Appl. Phys. 29, 675 (1990).CrossRefADSGoogle Scholar
  29. 29.
    G. Kloos, J. Polym. Sci., Part B: Polym. Phys. 34, 683 (1996).CrossRefGoogle Scholar
  30. 30.
    M. Zhenyi, J. I. Schenbeim, J. W. Lee, and B. A. Newman, J. Polym. Sci., Part B: Polym. Phys. 32, 2721 (1994).CrossRefGoogle Scholar
  31. 31.
    X.-Z. Zhao, V. Bharti, O. M. Zhang, et al., Appl. Phys. Lett. 73(14), 2054 (1998).ADSGoogle Scholar
  32. 32.
    V. Bharti, Z.-Y. Cheng, T.-B. Xu, and O. M. Zhang, Appl. Phys. Lett. 75(17), 2653 (1999).CrossRefADSGoogle Scholar
  33. 33.
    M. G. Broadhurst, G. T. Davis, J. E. McKinney, and R. E. Collins, J. Appl. Phys. 49, 4992 (1978).CrossRefADSGoogle Scholar
  34. 34.
    G. H. Michler, J. Macromol. Sci., Phys. B 38, 787 (1999).Google Scholar
  35. 35.
    H. Zhou and G. L. Wilkes, J. Mater. Sci. 33(2), 287 (1998).CrossRefGoogle Scholar
  36. 36.
    V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 31(12), 2590 (1989).Google Scholar
  37. 37.
    V. V. Kochervinskii, V. A. Glukhov, V. F. Romadin, et al., Vysokomol. Soedin., Ser. A 30(9), 1916 (1988).Google Scholar
  38. 38.
    V. V. Kochervinskii, V. A. Glukhov, and S. Yu. Kuznetsova, Vysokomol. Soedin., Ser. A 29(7), 1530 (1987).Google Scholar
  39. 39.
    V. V. Kochervinskii, Vysokomol. Soedin. 45 (2003) (in press).Google Scholar
  40. 40.
    V. V. Kochervinskii, T. E. Danilyuk, and L. Ya. Madorskaya, Vysokomol. Soedin., Ser. A 28(3), 619 (1986).Google Scholar
  41. 41.
    K. Eichhom, C. Sinn, and M. Dettenmaier, Appl. Opt. 36(18), 4259 (1997).ADSGoogle Scholar
  42. 42.
    W. Glenz and A. Peterlin, J. Macromol. Sci., Phys. B 4(3), 473 (1970).Google Scholar
  43. 43.
    P. Spiby, M. A. O'Neil, R. A. Duckett, and I. M. Ward, Polymer 33(21), 4479 (1992).CrossRefGoogle Scholar
  44. 44.
    K. Kober, I. A. Gorshkova, A. V. Savitsky, and A. E. Tshmel, J. Polym. Sci., Part B: Polym. Phys. 36, 2829 (1998).CrossRefGoogle Scholar
  45. 45.
    N. S. Murthy, C. Bednarczuk, P. B. Rim, and C. J. Nelson, J. Appl. Polym. Sci. 64(7), 1363 (1997).CrossRefGoogle Scholar
  46. 46.
    V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 44, 1127 (2002).Google Scholar
  47. 47.
    R. Schreiber, W. S. Veeman, W. Gabriesle, and J. Arnauts, Macromolecules 32(14), 4647 (1999).CrossRefGoogle Scholar
  48. 48.
    V. I. Vettegren', Fiz. Tverd. Tela (Leningrad) 26, 1699 (1984) [Sov. Phys. Solid State 26, 1030 (1984)].Google Scholar
  49. 49.
    W.-Y. Yeh and R. J. Young, Polymer 40, 857 (1999).CrossRefGoogle Scholar
  50. 50.
    V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 31(9), 1829 (1989).Google Scholar
  51. 51.
    S. Tsubakihara and M. Yasuniwa, Polym. J. (Tokyo) 28(7), 563 (1996).Google Scholar
  52. 52.
    K. Kaji, Makromol. Chem. 175, 311 (1974).CrossRefGoogle Scholar
  53. 53.
    B. H. Hahn, O. Herrmann-Schonherr, and J. H. Wendorff, Polymer 28, 201 (1987).CrossRefGoogle Scholar
  54. 54.
    P. J. Flory, D. J. Yoon, and K. Dill, Macromolecules 17, 862 (1984).CrossRefGoogle Scholar
  55. 55.
    D. J. Yoon and P. J. Flory, Macromolecules 17, 86 (1984).Google Scholar
  56. 56.
    V. V. Kochervinskii, Vysokomol. Soedin. 42(10), 1669 (2000).Google Scholar
  57. 57.
    A. Ionas and R. Legras, Macromolecules 26(4), 813 (1993).Google Scholar
  58. 58.
    G. Teyssedre and C. Lacabanne, Ferroelectrics 171, 125 (1995).Google Scholar
  59. 59.
    S. Ikeda and T. Watanabe, Rep. Prog. Polym. Phys. Jpn. 32, 335 (1989).Google Scholar
  60. 60.
    F. Schaffner and B. J. Jungnikel, IEEE Trans. Dielectr. Electr. Insul. 1(4), 553 (1994).CrossRefGoogle Scholar
  61. 61.
    M. G. Broadhurst and G. T. Davies, Ferroelectrics 31, 177 (1981).Google Scholar
  62. 62.
    K. Tashiro, S. Nishimura, and M. Kobayashi, Macromolecules 23, 2802 (1990).CrossRefGoogle Scholar
  63. 63.
    M.-C. Wu and W. P. Winfee, Ultrason. Symp. Proc., No. 2, 1242 (1989).Google Scholar
  64. 64.
    W. M. Reid and M. R. Steel, J. Appl. Phys. 51, 1860 (1980).CrossRefADSGoogle Scholar
  65. 65.
    B. R. Hahn, J. Appl. Phys. 57, 1294 (1985).CrossRefADSGoogle Scholar
  66. 66.
    E. Fukada, M. Date, H. E. Neumann, and J. H. Wendorff, J. Appl. Phys. 63, 1701 (1988).CrossRefADSGoogle Scholar
  67. 67.
    M. Date, E. Fukada, and J. H. Wendorff, IEEE Trans. Electr. Insul. 24, 457 (1989).Google Scholar
  68. 68.
    V. I. Gerasimov and M. V. Ivanov, Vysokomol. Soedin. 38, 1706 (1996).Google Scholar
  69. 69.
    J. Clements, G. R. Davies, and I. M. Ward, in Proceedings of 2nd International Conference on Electrical, Optical and Acoustical Properties of Polymers, Cantenbury, 1990 (London, 1990).Google Scholar
  70. 70.
    J. Clements, G. R. Davies, and I. M. Ward, Polymer 26, 208 (1985).CrossRefGoogle Scholar
  71. 71.
    W. N. Chen, H. J. Shaw, D. L. Weinstein, and L. T. Zitelli, in IEEE Ultrasonics Symposium Proceedings (IEEE, New York, 1978), p. 780.Google Scholar
  72. 72.
    M. Toda, Ferroelectrics 32, 127 (1981).Google Scholar
  73. 73.
    H. Ohigashi, K. Koga, H. Suzuki, et al., Ferroelectrics 60, 363 (1984).Google Scholar
  74. 74.
    B. A. Auld and J. J. Gagnepain, J. Appl. Phys. 50, 5511 (1979).CrossRefADSGoogle Scholar
  75. 75.
    K. Omate and H. Ohigashi, Appl. Phys. Lett. 66, 2215 (1995).ADSGoogle Scholar
  76. 76.
    E. L. Nix and I. M. Ward, Ferroelectrics 67, 137 (1986).Google Scholar
  77. 77.
    K. Tashiro, M. Kobayashi, H. Tadokoro, and E. Fukada, Polym. Bull. 2, 397 (1980).CrossRefGoogle Scholar
  78. 78.
    E. Fukada, G. M. Sessler, J. E. West, and P. Gunther, J. Appl. Phys. 62, 3643 (1987).CrossRefADSGoogle Scholar
  79. 79.
    G. M. Sessler and A. Berraissoul, IEEE Trans. Electr. Insul. 24, 249 (1989).Google Scholar
  80. 80.
    H. Kawai, Oyo Butsuri 39, 869 (1970).Google Scholar
  81. 81.
    H. J. Wintle and R. Diirsam, Phys. Rev. B 39, 3862 (1989).CrossRefADSGoogle Scholar
  82. 82.
    N. Murayama, J. Polym. Sci., Polym. Phys. Ed. 13, 929 (1975).Google Scholar
  83. 83.
    N. Murayama, K. Nakamura, H. Obara, and M. Segawa, Ultrasonics 14, 15 (1976).CrossRefGoogle Scholar
  84. 84.
    G. E. Johnson, L. L. Blyler, G. R. Crane, et al., Ferroelectrics 32, 43 (1981).Google Scholar
  85. 85.
    G. M. Sessler, D. K. Das-Gupta, A. S. DeReggi, et al., IEEE Trans. Electr. Insul. 27(4), 872 (1992).Google Scholar
  86. 86.
    W. Eisenmenger, H. Schmidt, and B. Dehlen, Braz. J. Phys. 29(2), 295 (1999).CrossRefGoogle Scholar
  87. 87.
    V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 31, 282 (1989).Google Scholar
  88. 88.
    J. K. Lee and M. A. Marcus, Ferroelectrics 32, 93 (1981).Google Scholar
  89. 89.
    M. A. Marcus, Ferroelectrics 57, 203 (1984).Google Scholar
  90. 90.
    G. E. Johnson, L. L. Blyler, and N. M. Hulton, Ferroelectrics 28, 303 (1980).Google Scholar
  91. 91.
    A. G. Kolbeck, J. Polym. Sci., Polym. Phys. Ed. 20, 1987 (1982).CrossRefGoogle Scholar
  92. 92.
    V. F. Romadin, V. G. Sokolov, V. V. Kochervinskii, et al., Plast. Massy, No. 6, 21 (1988).Google Scholar
  93. 93.
    M. Ya. Sherman, O. D. Lesnykh, N. B. Vlader, et al., Plast. Massy, No. 10, 46 (1990).Google Scholar
  94. 94.
    B. Wunderlich, Macromolecular Physics (Academic, New York, 1980; Mir, Moscow, 1984), Vol. 3.Google Scholar
  95. 95.
    V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 43(9), 1518 (2001).Google Scholar
  96. 96.
    K. T. Chang, B. A. Newman, J. I. Scheinbeim, and K. D. Pae, J. Appl. Phys. 52, 6557 (1982).ADSGoogle Scholar
  97. 97.
    K. D. Pae, K. Vijayan, R. W. Renfree, et al., Ferroelectrics 57, 249 (1984).Google Scholar
  98. 98.
    S. W. Weeks and R. Y. Ting, J. Acoust. Soc. Am. 74, 1681 (1983).ADSGoogle Scholar
  99. 99.
    T. Takemura, Ferroelectrics 57, 243 (1984).Google Scholar
  100. 100.
    Y. Wada and R. Hayakawa, Ferroelectrics 32, 115 (1981).Google Scholar
  101. 101.
    V. V. Kochervinskii, Neorg. Mater. 31(6), 851 (1995).Google Scholar
  102. 102.
    G. S. Smolenskii and A. Agranovskaya, Fiz. Tverd. Tela (Leningrad) 1, 1420 (1960) [Sov. Phys. Solid State 1, 1302 (1960)].Google Scholar
  103. 103.
    L. E. Cross, Ferroelectrics 76, 241 (1987).Google Scholar
  104. 104.
    L. E. Cross, Ferroelectrics 151, 305 (1994).Google Scholar
  105. 105.
    V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 40, 1636 (1998).Google Scholar
  106. 106.
    V. V. Kochervinskii, in Abstracts of XV All-Russian Conference on Physics of Ferroelectrics, Rostov-on-Don (1999).Google Scholar
  107. 107.
    V. Bokov and I. Myl'nikova, Fiz. Tverd. Tela (Leningrad) 3, 3 (1961) [Sov. Phys. Solid State 3, 1 (1961)].Google Scholar
  108. 108.
    K. A. Verkhovskaya and V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 32, 1669 (1990).Google Scholar
  109. 109.
    H. Smogor, B. Hilczer, and S. Warchol, Ferroelectrics 258, 291 (2001).Google Scholar
  110. 110.
    V. V. Kochervinskii, V. A. Glukhov, V. G. Sokolov, et al., Vysokomol. Soedin., Ser. A 30, 1969 (1988).Google Scholar
  111. 111.
    V. V. Kochervinskii and E. M. Murasheva, Vysokomol. Soedin., Ser. A 33, 2096 (1991).Google Scholar
  112. 112.
    K. Uchino and L. Cross, Jpn. J. Appl. Phys. 19, L171 (1980).Google Scholar
  113. 113.
    S. Nomura and K. Uchino, Ferroelectrics 41, 117 (1982).Google Scholar
  114. 114.
    R. E. Newnham, V. Sundar, R. Yimnirun, et al., Ceram. Trans. 88, 15 (1998).Google Scholar
  115. 115.
    A. Kholkin, Ferroelectrics 258, 209 (2001).Google Scholar
  116. 116.
    V. A. Isupov and M. Boudys, Ferroelectrics 41, 111 (1982).Google Scholar
  117. 117.
    V. V. Kochervinskii, Vysokomol. Soedin., Ser. A 44, 1925 (2002).Google Scholar
  118. 118.
    E. V. Colla, E. Yu. Koroleva, A. A. Nabereznov, et al., Ferroelectrics 151, 337 (1994).Google Scholar
  119. 119.
    F. Chu, I. M. Reaney, and N. Setter, Ferroelectrics 151, 343 (1994).Google Scholar
  120. 120.
    L. S. Kamzina, Ferroelectrics 253, 69 (2001).Google Scholar
  121. 121.
    G.-S. Xu, D.-L. Li, H.-S. Luo, et al., Ferroelectrics 253, 39 (2001).Google Scholar
  122. 122.
    J. M. Xue, J. Wang, D. M. Wan, et al., Ferroelectrics 253, 21 (2001).Google Scholar
  123. 123.
    Q. M. Zhang, W. Y. Pan, S. J. Jang, and L. E. Cross, J. Appl. Phys. 64, 6445 (1988).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • V. V. Kochervinskii
    • 1
  1. 1.Troitsk Institute for Innovation and Thermonuclear ResearchTroitsk, Moscow oblastRussia

Personalised recommendations