Advertisement

Acoustical Physics

, Volume 49, Issue 4, pp 369–388 | Cite as

Physical mechanisms of the therapeutic effect of ultrasound (a review)

  • M. R. Bailey
  • V. A. Khokhlova
  • O. A. Sapozhnikov
  • S. G. Kargl
  • L. A. Crum
Article

Abstract

Therapeutic ultrasound is an emerging field with many medical applications. High intensity focused ultrasound (HIFU) provides the ability to localize the deposition of acoustic energy within the body, which can cause tissue necrosis and hemostasis. Similarly, shock waves from a lithotripter penetrate the body to comminute kidney stones, and transcutaneous ultrasound enhances the transport of chemotherapy agents. New medical applications have required advances in transducer design and advances in numerical and experimental studies of the interaction of sound with biological tissues and fluids. The primary physical mechanism in HIFU is the conversion of acoustic energy into heat, which is often enhanced by nonlinear acoustic propagation and nonlinear scattering from bubbles. Other mechanical effects from ultrasound appear to stimulate an immune response, and bubble dynamics play an important role in lithotripsy and ultrasound-enhanced drug delivery. A dramatic shift to understand and exploit these nonlinear and mechanical mechanisms has occurred over the last few years. Specific challenges remain, such as treatment protocol planning and real-time treatment monitoring. An improved understanding of the physical mechanisms is essential to meet these challenges and to further advance therapeutic ultrasound.

Keywords

Shock Wave Acoustics Physical Mechanism Medical Application Kidney Stone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Vaezy, M. Andrew, P. Kaczkowski, and L. Crum, Annu. Rev. Biomed. Eng. 3, 375 (2001).CrossRefGoogle Scholar
  2. 2.
    Echocardiography 18(4), 309 (2001).Google Scholar
  3. 3.
    C. J. Diederich and K. Hynynen, Ultrasound Med. Biol. 25(6), 871 (1999).CrossRefGoogle Scholar
  4. 4.
    D. J. Coleman, F. L. Lizzi, R. H. Silverman, et al., Ultrasound Med. Biol. 12(8), 633 (1986).CrossRefGoogle Scholar
  5. 5.
    F. J. Fry, N. T. Sanghvi, R. S. Foster, et al., Ultrasound Med. Biol. 21(9), 1227 (1995).CrossRefGoogle Scholar
  6. 6.
    G. ter Haar, Ultrasound Med. Biol. 21(9), 1089 (1995).Google Scholar
  7. 7.
    K. R. Erikson, F. J. Fry, and J. P. Jones, IEEE Trans. Sonics Ultrason. 21(3), 144 (1974).Google Scholar
  8. 8.
    N. T. Sanghvi and R. H. Hawes, Exp. Invest. Endosc. 4(2), 383 (1994).Google Scholar
  9. 9.
    D. Cathignol, in Nonlinear Acoustics at the Beginning of the 21st Century: Proceedings of 16th ISNA, Moscow, 2002, Ed. by O. V. Rudenko and O. A. Sapozhnikov (2003), Vol. 1, pp. 371–378.Google Scholar
  10. 10.
    A. K. Burov and G. D. Andreevskaya, Dokl. Akad. Nauk SSSR 106(3), 445 (1956).Google Scholar
  11. 11.
    V. A. Burov, N. P. Dmitrieva, and O. V. Rudenko, Dokl. Akad. Nauk 383(3), 101 (2002).Google Scholar
  12. 12.
    G. T. Clement and K. Hynynen, Phys. Med. Biol. 47(8), 1219 (2002).CrossRefGoogle Scholar
  13. 13.
    A. G. Visioli, I. H. Rivens, G. R. ter Haar, et al., Eur. J. Ultrasound 9(1), 11 (1999).CrossRefGoogle Scholar
  14. 14.
    K. Hynynen, O. Pomeroy, D. N. Smith, et al., Radiology 219(1), 176 (2001).Google Scholar
  15. 15.
    F. Wu, W.-Z. Chen, J. Bai, et al., Ultrasound Med. Biol. 27(8), 1099 (2001).CrossRefGoogle Scholar
  16. 16.
    N. T. Sanghvi, R. S. Foster, R. Bihrle, et al., Eur. J. Ultrasound 9(1), 19 (1999).CrossRefGoogle Scholar
  17. 17.
    A. Gelet, J. Y. Chapelon, R. Bouvier, et al., Eur. Urol. 40(2), 124 (2001).CrossRefGoogle Scholar
  18. 18.
    T. Uchida, N. T. Sanghvi, T. A. Gardner, et al., Urology 59(3), 394 (2002).CrossRefGoogle Scholar
  19. 19.
    P. J. Polack, T. Iwamoto, R. H. Silverman, et al., Invest. Ophthalmol. Visual Sci. 32(7), 2136 (1991).Google Scholar
  20. 20.
    F. L. Lizzi, C. X. Deng, P. Lee, et al., Eur. J. Ultrasound 9(1), 71 (1999).CrossRefGoogle Scholar
  21. 21.
    M. L. Denbow, I. H. Rivens, I. J. Rowland, et al., Am. J. Obstet. Gynecol. 182(2), 387 (2000).Google Scholar
  22. 22.
    C. Delon-Martin, C. Vogt, E. Chignier, et al., Ultrasound Med. Biol. 21(1), 113 (1995).CrossRefGoogle Scholar
  23. 23.
    S. Vaezy, R. Martin, G. Keilman, et al., J. Trauma 47(3), 521 (1999).Google Scholar
  24. 24.
    K. Hynynen, V. Colucci, A. Chung, and F. Jolesz, Ultrasound Med. Biol. 22, 1071 (1996).Google Scholar
  25. 25.
    Proceedings of 2nd International Symposium on Therapeutic Ultrasound, Seattle, 2002, Ed. by M. A. Andrew, L. A. Crum, and S. Vaezy (2003).Google Scholar
  26. 26.
    A. J. Coleman and J. E. Saunders, Ultrasonics 31, 75 (1993).CrossRefGoogle Scholar
  27. 27.
    M. Delius, Eur. Surg. Res. 34(1–2), 30 (2002).Google Scholar
  28. 28.
    J. A. Moody, A. P. Evan, and J. E. Lingeman, in Comprehensive Urology, Ed. by R. M. Weiss, N. J. R. George, and P. H. O’Reilly (Mosby, New York, 2001), pp. 623–636.Google Scholar
  29. 29.
    B. Sturtevant, in Smith’s Textbook of Endourology, Ed. by A. D. Smith, G. H. Badlani, D. H. Bagley, R. V. Clayman, G. H. Jordan, L. R. Kavoussi, J. E. Lingeman, G. M. Preminger, and J. W. Segura (Quality Medical, St. Louis, MO, 1996), Chap. 39, pp. 529–552.Google Scholar
  30. 30.
    S. Zhu, F. H. Cocks, G. M. Preminger, and P. Zhong, Ultrasound Med. Biol. 28(5), 661 (2002).CrossRefGoogle Scholar
  31. 31.
    M. Delius, F. Ueberle, and S. Gambihler, Ultrasound Med. Biol. 20(3), 251 (1994).Google Scholar
  32. 32.
    M. Thiel, Clin. Orthop. Relat. Res. 387, 18 (2001).Google Scholar
  33. 33.
    M. Maier, T. Saisu, J. Beckmann, et al., Ultrasound Med. Biol. 27(5), 665 (2001).CrossRefGoogle Scholar
  34. 34.
    P. J. Fitzgerald, A. Takagi, M. P. Moore, et al., Circulation 103(14), 1828 (2001).Google Scholar
  35. 35.
    D. J. Coleman, F. L. Lizzi, J. Driller, et al., Ophthalmology 92, 347 (1985).Google Scholar
  36. 36.
    V. I. Filippenko and V. V. Tret’yak, Voen.-Med. Zh. 8, 30 (1989).Google Scholar
  37. 37.
    E. I. Sidorenko, V. V. Filatov, and Yu. M. Alimova, Vestn. Oftalmol. 115(2), 31 (1999).Google Scholar
  38. 38.
    A. L. Malcolm and G. R. ter Haar, Ultrasound Med. Biol. 22, 659 (1996).CrossRefGoogle Scholar
  39. 39.
    N. A. Watkin, G. R. ter Haar, and I. Rivens, Ultrasound Med. Biol. 22, 483 (1996).CrossRefGoogle Scholar
  40. 40.
    IEEE Guide for Medical Ultrasound Field Parameter Measurements (IEEE, New York, 1990), IEEE Std 790-1989.Google Scholar
  41. 41.
    ANSI S1.24 TR-2002 American National Standard Technical Report—Bubble Detection and Cavitation Monitoring (2002).Google Scholar
  42. 42.
    J. Ultrasound Med. 19, 68 (2000).Google Scholar
  43. 43.
    R. L. Clarke and G. R. ter Haar, Ultrasound Med. Biol. 23(2), 299 (1997).CrossRefGoogle Scholar
  44. 44.
    C. R. Hill, Phys. Med. Biol. 15, 241 (1970).CrossRefGoogle Scholar
  45. 45.
    M. Brentnall, R. Martin, S. Vaezy, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(1), 53 (2001).CrossRefGoogle Scholar
  46. 46.
    J. Y. Chapelon, D. Cathignol, C. Cain, et al., Ultrasound Med. Biol. 26(1), 153 (2000).CrossRefGoogle Scholar
  47. 47.
    S. Vaezy, R. Martin, P. Kaczkowski, et al., J. Vasc. Surg. 29(3), 533 (1999).CrossRefGoogle Scholar
  48. 48.
    S. Umemura, K. Sasaki, K. Kawabata, et al., in Proceedings of 1999 International IEEE Ultrasonics Symposium (IEEE, 1999), Vol. 2, No. 99CH37027, p. 1439.Google Scholar
  49. 49.
    C. A. Cain and S. Umemura, IEEE Trans. Microwave Theory Tech. 34(5), 542 (1986).Google Scholar
  50. 50.
    L. R. Gavrilov and J. W. Hand, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 125 (2000).CrossRefGoogle Scholar
  51. 51.
    J. P. Sferruzza, A. Birer, and D. Cathignol, Ultrasonics 38(10), 965 (2000).CrossRefGoogle Scholar
  52. 52.
    W. Eisenmenger, Ultrasound Med. Biol. 27, 683 (2001).CrossRefGoogle Scholar
  53. 53.
    O. V. Rudenko and O. A. Sapozhnikov, Moscow Univ. Phys. Bull. 46(1), 5 (1991).Google Scholar
  54. 54.
    P. Zhong and Y. Zhou, J. Acoust. Soc. Am. 110, 3283 (2001).CrossRefADSGoogle Scholar
  55. 55.
    D. L. Sokolov, M. R. Bailey, and L. A. Crum, J. Acoust. Soc. Am. 110, 1685 (2001).CrossRefADSGoogle Scholar
  56. 56.
    A. P. Evan, L. R. Willis, B. A. Connors, et al., J. Urol. 168(4), 1556 (2002).Google Scholar
  57. 57.
    D. Cathignol, J. Tavakkoli, A. Birer, and A. Arefiev, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 788 (1998).Google Scholar
  58. 58.
    N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zabolotskaya, Nonlinear Theory of Sound Beams (Nauka, Moscow, 1982; AIP, New York, 1987).Google Scholar
  59. 59.
    P. Meaney, M. D. Cahill, and G. R. ter Haar, Ultrasound Med. Biol. 26, 441 (2000).CrossRefGoogle Scholar
  60. 60.
    F. P. Curra, P. D. Mourad, V. A. Khokhlova, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1077 (2000).CrossRefGoogle Scholar
  61. 61.
    E. A. Filonenko and V. A. Khokhlova, Akust. Zh. 47, 541 (2001) [Acoust. Phys. 47, 468 (2001)].Google Scholar
  62. 62.
    M. A. Averkiou and R. O. Cleveland, J. Acoust. Soc. Am. 106, 102 (1999).CrossRefADSGoogle Scholar
  63. 63.
    T. Christopher, J. Comput. Acoust. 1, 371 (1993).Google Scholar
  64. 64.
    S. S. Kashcheeva, O. A. Sapozhnikov, V. A. Khokhlova, et al., Akust. Zh. 46, 211 (2000) [Acoust. Phys. 46, 170 (2000)].Google Scholar
  65. 65.
    J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 104, 2061 (1998).CrossRefADSGoogle Scholar
  66. 66.
    P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488 (1991).ADSGoogle Scholar
  67. 67.
    S. Ginter, M. Liebler, E. Steiger, et al., J. Acoust. Soc. Am. 111, 2049 (2002).CrossRefADSGoogle Scholar
  68. 68.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge Univ. Press, New York, 1992).Google Scholar
  69. 69.
    Nonlinear Acoustics, Ed. by M. F. Hamilton and D. T. Blackstock (Academic, San Diego, 1998), pp. 66–106.Google Scholar
  70. 70.
    J. Naze Tjotta, S. Tjotta, and E. H. Vefring, J. Acoust. Soc. Am. 89, 1017 (1991).ADSGoogle Scholar
  71. 71.
    B. Ystad and J. Bernsten, Acta Acust. (China) 3, 323 (1995).Google Scholar
  72. 72.
    G. Wojcik, J. Mould, Jr., F. L. Lizzi, et al., in Proceedings of 1995 Ultrasonics Symposium (IEEE, 1995), p. 1617.Google Scholar
  73. 73.
    T. Kamakura, T. Ishivata, and K. Matsuda, J. Acoust. Soc. Am. 107, 3035 (2000).CrossRefADSGoogle Scholar
  74. 74.
    A. C. Baker, A. M. Berg, A. Sahin, and J. Naze Tjotta, J. Acoust. Soc. Am. 97, 3510 (1995).CrossRefADSGoogle Scholar
  75. 75.
    T. Kamakura, M. Tani, Y. Kumamoto, and K. Ueda, J. Acoust. Soc. Am. 91, 3144 (1992).CrossRefADSGoogle Scholar
  76. 76.
    V. A. Khokhlova, R. Souchon, J. Tavakkoli, et al., J. Acoust. Soc. Am. 110, 95 (2001).CrossRefADSGoogle Scholar
  77. 77.
    H. H. Pennes, J. Appl. Physiol. 1, 93 (1948).Google Scholar
  78. 78.
    V. A. Khokhlova, N. Miller, R. Ollos, et al., in Proceedings of 17th International Congress on Acoustics (Rome, 2001), p. 186.Google Scholar
  79. 79.
    S. Sapareto and W. Dewey, J. Radiat. Oncol. Biol. Phys. 10(6), 787 (1984).Google Scholar
  80. 80.
    V. A. Akulichev, in High-Intensity Ultrasonic Fields, Ed. by L. D. Rozenberg (Nauka, Moscow, 1968; Plenum, New York, 1971).Google Scholar
  81. 81.
    C. C. Church, J. Acoust. Soc. Am. 86, 215 (1989).CrossRefADSGoogle Scholar
  82. 82.
    O. A. Sapozhnikov, V. A. Khokhlova, M. R. Bailey, et al., J. Acoust. Soc. Am. 112, 1183 (2002).CrossRefGoogle Scholar
  83. 83.
    T. J. Matula, P. R. Hilmo, B. D. Storey, and A. J. Szeri, Phys. Fluids 14(3), 913 (2002).CrossRefADSGoogle Scholar
  84. 84.
    Z. Ding and S. M. Gracewski, J. Acoust. Soc. Am. 96(6), 3636 (1994).CrossRefADSGoogle Scholar
  85. 85.
    F. Chavrier, J. Y. Chapelon, A. Gelet, and D. Cathignol, J. Acoust. Soc. Am. 108, 432 (2000).CrossRefADSGoogle Scholar
  86. 86.
    R. G. Holt and R. A. Roy, Ultrasound Med. Biol. 27(10), 1399 (2001).CrossRefGoogle Scholar
  87. 87.
    J. E. Field, Phys. Med. Biol. 36, 1475 (1991).CrossRefGoogle Scholar
  88. 88.
    A. Philipp, M. Delius, C. Scheffczyk, et al., J. Acoust. Soc. Am. 93, 2496 (1993).CrossRefADSGoogle Scholar
  89. 89.
    J. C. Bamber and F. Dunn, in Encyclopedia of Acoustics, Ed. by M. J. Crocker (Wiley, New York, 1997), Vol. 3, pp. 1699–1726.Google Scholar
  90. 90.
    Y. Y. Botros, J. L. Volakis, P. VanBaren, and E. S. Ebbini, IEEE Trans. Biomed. Eng. 44(11), 1039 (1997).CrossRefGoogle Scholar
  91. 91.
    M. Lokhandwalla and B. Sturtevant, Phys. Med. Biol. 46(2), 413 (2001).CrossRefGoogle Scholar
  92. 92.
    P. P. Lele, in Ultrasound: Medical Applications, Biological Effects and Hazard Potential, Ed. by M. H. Repacholi, M. Grandolfo, and A. Rindi (Plenum, New York, 1986), pp. 275–306.Google Scholar
  93. 93.
    M. R. Bailey, L. N. Couret, O. A. Sapozhnikov, et al., Ultrasound Med. Biol. 27, 696 (2000).Google Scholar
  94. 94.
    O. A. Sapozhnikov, Akust. Zh. 37, 760 (1991) [Sov. Phys. Acoust. 37, 395 (1991)].Google Scholar
  95. 95.
    D. L. Sokolov, M. R. Bailey, L. A. Crum, et al., J. Endourol. 16(10), 709 (2002).CrossRefGoogle Scholar
  96. 96.
    P. Lele and A. Pierce, in Proceedings of Workshop on Interaction of Ultrasound and Biological Tissues, Seattle (DHEW, Washington, 1972), No. 73-8008, p. 121.Google Scholar
  97. 97.
    W. J. Fry, J. Acoust. Soc. Am. 22, 867 (1950).Google Scholar
  98. 98.
    H. T. O’Neil, J. Acoust. Soc. Am. 21, 516 (1949).Google Scholar
  99. 99.
    O. V. Rudenko, Moscow Univ. Phys. Bull., No. 6, 18 (1996).Google Scholar
  100. 100.
    O. A. Sapozhnikov, T. V. Sinilo, and Yu. A. Pishchalnikov, in Nonlinear Acoustics at the Turn of the Millennium: Proceedings of 15th International Symposium on Nonlinear Acoustics, Goettingen, Germany, 1999, Ed. by W. Lauterborn and T. Kurz (Am. Inst. of Physics, 2000), pp. 483–486.Google Scholar
  101. 101.
    F. O. Schmitt and B. Uhlemeyer, Proc. Soc. Exp. Biol. Med. 27, 626 (1930).Google Scholar
  102. 102.
    L. A. Crum and G. M. Hansen, Phys. Med. Biol. 27, 413 (1982).CrossRefGoogle Scholar
  103. 103.
    S. Vaezy, X. Shi, R. W. Martin, et al., Ultrasound Med. Biol. 27, 33 (2000).Google Scholar
  104. 104.
    E. L. Carstensen, D. S. Campbell, D. Hoffman, et al., Ultrasound Med. Biol. 16, 687 (1990).Google Scholar
  105. 105.
    P. Zhong, Y. Zhou, and S. Zhu, Ultrasound Med. Biol. 27, 119 (2001).CrossRefGoogle Scholar
  106. 106.
    A. Vogel and W. Lauterborn, J. Acoust. Soc. Am. 84, 719 (1988).CrossRefADSGoogle Scholar
  107. 107.
    L. A. Crum, in Proceedings of Ultrasonics Symposium (1982), Vol. 1, p. 1.Google Scholar
  108. 108.
    T. R. Morgan, V. P. Laudone, W. D. Heston, et al., J. Urol. 139, 186 (1988).Google Scholar
  109. 109.
    S. L. Poliachik, W. L. Chandler, P. D. Mourad, et al., Ultrasound Med. Biol. 27(11), 1567 (2001).CrossRefGoogle Scholar
  110. 110.
    J. Tavakkoli, A. Birer, A. Arefiev, et al., Ultrasound Med. Biol. 23(1), 107 (1997).CrossRefGoogle Scholar
  111. 111.
    J.-Y. Chapelon, J. Margonari, F. Vernier, et al., Cancer Res. 52, 6353 (1992).Google Scholar
  112. 112.
    F. J. Fry and L. K. Johnson, Ultrasound Med. Biol. 4, 337 (1978).CrossRefGoogle Scholar
  113. 113.
    R. O. Cleveland, D. A. Lifshitz, B. A. Connors, et al., Ultrasound Med. Biol. 24, 293 (1998).CrossRefGoogle Scholar
  114. 114.
    M. Lokhandwalla, J. A. McAteer, J. C. Williams, Jr., and B. Sturtevant, Phys. Med. Biol. 46(4), 1245 (2001).CrossRefGoogle Scholar
  115. 115.
    K. Hynynen, Ultrasound Med. Biol. 17(2), 157 (1991).CrossRefGoogle Scholar
  116. 116.
    A. J. Coleman, J. E. Saunders, L. A. Crum, and M. Dyson, Ultrasound Med. Biol. 13, 69 (1987).Google Scholar
  117. 117.
    C. Chaussy, W. Brendel, and E. Schmiedt, Lancet 2(8207), 1265 (1980).Google Scholar
  118. 118.
    R. E. Apfel and C. K. Holland, Ultrasound Med. Biol. 17(2), 179 (1991).CrossRefGoogle Scholar
  119. 119.
    C. X. Deng, Q. Xu, R. E. Apfel, and C. K. Holland, Ultrasound Med. Biol. 22(7), 939 (1996).CrossRefGoogle Scholar
  120. 120.
    R. Seip and E. S. Ebbini, IEEE Trans. Biomed. Eng. 42(8), 828 (1995).CrossRefGoogle Scholar
  121. 121.
    R. Maass-Moreno, C. A. Damianou, and N. T. Sanghvi, J. Acoust. Soc. Am. 100, 2522 (1996).ADSGoogle Scholar
  122. 122.
    M. Ribault, J.-Y. Chapelon, D. Cathignol, and A. Gelet, Ultrason. Imaging 20(3), 160 (1998).Google Scholar
  123. 123.
    R. Souchon, L. Soualmi, M. Bertrand, et al., Ultrasonics 40, 867 (2001).Google Scholar
  124. 124.
    X. Shi, R. W. Martin, D. Rouseff, et al., Ultrason. Imaging 21(2), 107 (1999).Google Scholar
  125. 125.
    M. Fatemi and J. F. Greenleaf, Proc. Natl. Acad. Sci. USA 96(12), 6603 (1999).CrossRefADSGoogle Scholar
  126. 126.
    E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, Ultrasound Med. Biol. 28(3), 331 (2002).CrossRefGoogle Scholar
  127. 127.
    O. V. Rudenko and A. P. Sarvazyan, Crit. Rev. Biomed. Eng., No. 3, 6 (2000).Google Scholar
  128. 128.
    J. E. Lingeman, Urol. Clin. North Am. 24, 185 (1997).CrossRefGoogle Scholar
  129. 129.
    J. J. Rassweiler, C. Renner, C. Chaussy, and S. Thuroff, Eur. Urol. 39(2), 187 (2001).CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • M. R. Bailey
    • 1
  • V. A. Khokhlova
    • 2
  • O. A. Sapozhnikov
    • 2
  • S. G. Kargl
    • 1
  • L. A. Crum
    • 1
  1. 1.Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, College of Ocean and Fishery ScienceUniversity of WashingtonSeattleUSA
  2. 2.Department of Acoustics, Physics FacultyMoscow State UniversityMoscowRussia

Personalised recommendations