Advertisement

Magnetic properties of defects in spin-gap magnets

  • A. I. Smirnov
  • V. N. Glazkov
  • S. S. Sosin
Scientific Summaries

Abstract

The magnetic properties of defects were studied in spin-gap magnets such as spin-Peierls magnet CuGeO3, Haldane magnet PbNi2V2O8, and charge-ordered ladder magnet NaV2O5. Doping of these systems with nonmagnetic impurities leads to additional magnetic degrees of freedom, which manifest themselves at low temperatures, where the intrinsic magnetic susceptibility of a spin-gap system is close to zero. Magnetic susceptibility appears due to the local destruction of the singlet ground state as a result of impurity-induced breakage of spin chains. Antiferromagnetically correlated areas arise near the spin-chain breaks. The sizes of these areas and the effective spin of these specific spin clusters are estimated. The order parameter and its spatially modulated depth are determined for impurity-induced magnetically ordered phases. The magnetic properties of defects for the NaV2O5 ladder structure are explained in the model of electrons “hopping” near the chain break. The hopping degree of freedom effectively influences the total spin of a spin-chain fragment and magnetization of the system.

PACS numbers

75.10.Jm 75.60.Ch 75.50.Ee 75.30.−m 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bethe, Z. Phys. 71, 205 (1931).ADSzbMATHGoogle Scholar
  2. 2.
    J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 (1962).ADSGoogle Scholar
  3. 3.
    F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. V. Meshkov, Phys. Rev. B 48, 6167 (1993).CrossRefADSGoogle Scholar
  5. 5.
    L. N. Bulaevskii, Fiz. Tverd. Tela (Leningrad) 11, 1132 (1969) [Sov. Phys. Solid State 11, 921 (1969)].Google Scholar
  6. 6.
    A. W. Garrett, S. E. Nagler, D. A. Tennant, et al., Phys. Rev. Lett. 79, 745 (1997).CrossRefADSGoogle Scholar
  7. 7.
    M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).CrossRefADSGoogle Scholar
  8. 8.
    E. Pytte, Phys. Rev. B 10, 4637 (1974).ADSGoogle Scholar
  9. 9.
    E. Dagotto and T. M. Rice, Science 271, 618 (1996).ADSGoogle Scholar
  10. 10.
    H. Kageyama, K. Yoshimura, R. Stern, et al., Phys. Rev. Lett. 82, 3168 (1999).ADSGoogle Scholar
  11. 11.
    H. Fukuyama, T. Tanimoto, and M. Saito, J. Phys. Soc. Jpn. 65, 1182 (1996).Google Scholar
  12. 12.
    S. Miyashita and S. Yamamoto, Phys. Rev. B 48, 913 (1993).CrossRefADSGoogle Scholar
  13. 13.
    E. F. Shender and S. A. Kivelson, Phys. Rev. Lett. 66, 2384 (1991).CrossRefADSGoogle Scholar
  14. 14.
    L. P. Regnault, J. P. Renard, G. Dhalenne, and A. Revcolevschi, Europhys. Lett. 32, 579 (1995).Google Scholar
  15. 15.
    Y. Uchiyama, Y. Sasago, I. Tsukada, et al., Phys. Rev. Lett. 83, 632 (1999).CrossRefADSGoogle Scholar
  16. 16.
    A. Oosawa, T. Ono, and H. Tanaka, Phys. Rev. B 66, 020405 (2002).Google Scholar
  17. 17.
    M. Honda, T. Shibata, K. Kindo, et al., J. Phys. Soc. Jpn. 65, 691 (1996).Google Scholar
  18. 18.
    V. N. Glazkov, A. I. Smirnov, O. A. Petrenko, et al., J. Phys.: Condens. Matter 10, 7879 (1998).CrossRefADSGoogle Scholar
  19. 19.
    M. I. Belinskii, B. S. Tsukerblat, and A. V. Ablov, Fiz. Tverd. Tela (Leningrad) 16, 989 (1974) [Sov. Phys. Solid State 16, 639 (1974)].Google Scholar
  20. 20.
    V. N. Glazkov, R. M. Eremina, A. I. Smirnov, et al., Zh. Éksp. Teor. Fiz. 120, 164 (2001) [JETP 93, 143 (2001)].Google Scholar
  21. 21.
    P. W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954).Google Scholar
  22. 22.
    M. Hagiwara, K. Katsumata, I. Affleck, et al., Phys. Rev. Lett. 65, 3181 (1990).CrossRefADSGoogle Scholar
  23. 23.
    T. Kennedy, J. Phys.: Condens. Matter 2, 5737 (1990).ADSGoogle Scholar
  24. 24.
    S. A. Altshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Nauka, Moscow, 1972; Halsted, New York, 1975).Google Scholar
  25. 25.
    A. I. Smirnov, V. N. Glazkov, H.-A. Krug von Nidda, et al., Phys. Rev. B 65, 174422 (2002).Google Scholar
  26. 26.
    A. Zheludev, T. Masuda, I. Tsukada, et al., Phys. Rev. B 62, 8921 (2000).CrossRefADSGoogle Scholar
  27. 27.
    V. N. Glazkov, A. I. Smirnov, K. Uchinokura, and T. Masuda, Phys. Rev. B 65, 144427 (2002).Google Scholar
  28. 28.
    V. K. S. Shante and S. Kirkpatrick, Adv. Phys. 20, 325 (1971).CrossRefADSGoogle Scholar
  29. 29.
    C. Yasuda, S. Todo, M. Matsumoto, and H. Takayama, Phys. Rev. B 64, 092405 (2001).Google Scholar
  30. 30.
    M. V. Mostovoy and D. I. Khomsky, Solid State Commun. 113, 159 (2000).Google Scholar
  31. 31.
    S. Grenier, A. Toader, J. E. Lorenzo, et al., Phys. Rev. B 65, 180101(R) (2002).Google Scholar
  32. 32.
    A. I. Smirnov, S. S. Sosin, R. Calemczuk, et al., Phys. Rev. B 63, 014412 (2001).Google Scholar
  33. 33.
    J. Bonner and M. Fisher, Phys. Rev. A 135, 640 (1964).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • A. I. Smirnov
    • 1
  • V. N. Glazkov
    • 1
  • S. S. Sosin
    • 1
  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations