Advertisement

Physics of Atomic Nuclei

, Volume 66, Issue 6, pp 1152–1162 | Cite as

Accuracy and efficiency of modern methods for electronic structure calculation on heavy-and superheavy-element compounds

  • A. V. Titov
  • N. S. Mosyagin
  • T. A. Isaev
  • A. N. Petrov
Article

Abstract

The methods that are actively used for electronic structure calculations of low-lying states of heavy-and superheavy-element compounds are briefly described. The advantages and disadvantages of the Dirac-Coulomb-Breit Hamiltonian, Huzinaga-type potential, shape-consistent Relativistic Effective Core Potential (RECP), and Generalized RECP are discussed. The nonvariational technique of the electron-structure restoration in atomic cores after the RECP calculation of a molecule is presented. The features of the approaches accounting for electron correlation, the configuration interaction and coupled cluster methods, are also described. The results of calculations on E113, E114, U, and other heavy-atom systems are presented.

Keywords

Elementary Particle Cluster Method Structure Calculation Electron Correlation Modern Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The new version of the HFD code, was developed by I. I. Tupitsyn and A. N. Petrov.Google Scholar
  2. 2.
    V. Bonifacic and S. Huzinaga, J. Chem. Phys. 60, 2779 (1974).CrossRefGoogle Scholar
  3. 3.
    Y. S. Lee, W. C. Ermler, and K. S. Pitzer, J. Chem Phys. 67, 5861 (1977).ADSGoogle Scholar
  4. 4.
    P. A. Christiansen, Y. S. Lee, and K. S. Pitzer, J. Chem. Phys. 71, 4445 (1979).CrossRefADSGoogle Scholar
  5. 5.
    W. A. Goddard III, Phys. Rev. 174, 659 (1968).CrossRefADSGoogle Scholar
  6. 6.
    P. Hafner and W. H. E. Schwarz, Chem. Phys. Lett 65, 537 (1979).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Titov, A. O. Mitrushenkov, and I. I. Tupitsyn, Chem. Phys. Lett. 185, 330 (1991).CrossRefGoogle Scholar
  8. 8.
    I. I. Tupitsyn, N. S. Mosyagin, and A. V. Titov, J. Chem. Phys. 103, 6548 (1995).CrossRefADSGoogle Scholar
  9. 9.
    A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359 (1999).CrossRefGoogle Scholar
  10. 10.
    A. V. Titov and N. S. Mosyagin, Russ. J. Phys. Chem. 74 (Suppl. 2), S376 (2000).Google Scholar
  11. 11.
    N. S. Mosyagin, A. V. Titov, and Z. Latajka, Int. J. Quantum Chem. 63, 1107 (1997).CrossRefGoogle Scholar
  12. 12.
    N. S. Mosyagin, E. Eliav, A. V. Titov, and U. Kaldor, J. Phys. B 33, 667 (2000).CrossRefADSGoogle Scholar
  13. 13.
    T. A. Isaev, N. S. Mosyagin, M. G. Kozlov, et al., J. Phys. B 33, 5139 (2000).CrossRefADSGoogle Scholar
  14. 14.
    C. S. Nash, B. C. Bursten, and W. C. Ermler, J. Chem Phys. 106, 5133 (1997).CrossRefADSGoogle Scholar
  15. 15.
    A. V. Titov and N. S. Mosyagin, Struct. Chem. 6, 317 (1995).Google Scholar
  16. 16.
    W. C. Ermler, R. B. Ross, and P. A. Christiansen, Int. J. Quantum Chem. 40, 829 (1991).CrossRefGoogle Scholar
  17. 17.
    W. Küchle, M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys. 100, 7535 (1994).ADSGoogle Scholar
  18. 18.
    J. H. Wood and A. M. Boring, Phys. Rev. B 18, 2701 (1978).CrossRefADSGoogle Scholar
  19. 19.
    U. Kaldor and E. Eliav, Adv. Quantum Chem. 31, 313 (1999).Google Scholar
  20. 20.
    A. V. Titov, N. S. Mosyagin, A. B. Alekseyev, and R. J. Buenker, Int. J. Quantum Chem. 81, 409 (2001).CrossRefGoogle Scholar
  21. 21.
    A. N. Petrov, N. S. Mosyagin, T. A. Isaev, et al., Phys. Rev. Lett. 88, 073001 (2002).Google Scholar
  22. 22.
    A. V. Titov, Int. J. Quantum Chem. 57, 453 (1996).CrossRefGoogle Scholar
  23. 23.
    E. R. Davidson, The World of Quantum Chemistry (Reidel, Dordrecht, 1974), p. 17.Google Scholar
  24. 24.
    S. Krebs and R. J. Buenker, J. Chem. Phys. 103, 5613 (1995).CrossRefADSGoogle Scholar
  25. 25.
    J. Paldus, Methods in Computational Molecular Physics (Plenum Press, New York, 1992), p. 99.Google Scholar
  26. 26.
    G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 75, 1284 (1981).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    P. Pulay, Chem. Phys. Lett. 73, 393 (1980).CrossRefADSGoogle Scholar
  28. 28.
    P. Pulay, J. Comput. Chem. 3, 556 (1982).CrossRefGoogle Scholar
  29. 29.
    N. S. Mosyagin, E. Eliav, and U. Kaldor, J. Phys. B 34, 339 (2001).CrossRefADSGoogle Scholar
  30. 30.
    N. S. Mosyagin, A. V. Titov, E. Eliav, and U. Kaldor, J. Chem. Phys. 115, 2007 (2001).CrossRefADSGoogle Scholar
  31. 31.
    M. Gutowski, J. H. Van Lenthe, J. Verbeek, et al., Chem. Phys. Lett. 124, 370 (1986).CrossRefADSGoogle Scholar
  32. 32.
    B. Liu and A. D. McLean, J. Chem. Phys. 91, 2348 (1989).ADSGoogle Scholar
  33. 33.
    A. V. Titov, N. S. Mosyagin, and V. F. Ezhov, Phys. Rev. Lett. 77, 5346 (1996).CrossRefADSGoogle Scholar
  34. 34.
    N. S. Mosyagin, M. G. Kozlov, and A. V. Titov, J. Phys. B 31, L763 (1998).CrossRefADSGoogle Scholar
  35. 35.
    M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko, Phys. Rev. A 56, R3326 (1997).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • A. V. Titov
    • 1
  • N. S. Mosyagin
    • 1
  • T. A. Isaev
    • 1
  • A. N. Petrov
    • 1
  1. 1.Petersburg Nuclear Physics InstituteRussian Academy of SciencesGatchinaRussia

Personalised recommendations