Advertisement

Physics of the Solid State

, Volume 45, Issue 6, pp 1170–1176 | Cite as

Morphology and optical spectra of metal iodate microcrystals in porous matrices

  • V. F. Agekyan
  • I. Akai
  • T. Karasawa
Low-Dimensional Systems and Surface Physics

Abstract

Microcrystals of iodates of mercury, lead, thallium, and bismuth were grown in pores of glass and polymer matrices from solutions or through sublimation in vacuum. Images of these microcrystals embedded in matrices were obtained with an electron microscope. Exciton absorption and luminescence spectra of the microcrystals revealed a strong difference in the temperature regions of stability of the various structural modfications between bulk crystals and microcrystals of some iodates. The absorption and luminescence spectra are broadened inhomogeneously because of considerable size dispersion of the microcrystals and exhibit quantum confinement effects. The exciton emission spectra show that exciton interaction in microcrystals becomes significant at very low optical pumping levels because of efficient excitation transfer from the matrix.

Keywords

Bismuth Thallium Luminescence Spectrum Polymer Matrice Quantum Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. J. Bao, T. E. Schlesinger, R. B. James, et al., J. Appl. Phys. 68, 2951 (1990).ADSGoogle Scholar
  2. 2.
    R. Farell, F. Olschner, K. Shah, and M. R. Squillante, Nucl. Instrum. Methods Phys. Res. A 387, 194 (1997).ADSGoogle Scholar
  3. 3.
    N. V. Sochinskii, V. Munos, J. M. Perez, et al., Appl. Phys. Lett. 72, 2023 (1998).CrossRefADSGoogle Scholar
  4. 4.
    I. Kh. Akopyan, O. N. Volkova, B. V. Novikov, and B. I. Venzel’, Fiz. Tverd. Tela (St. Petersburg) 39, 468 (1997) [Phys. Solid State 39, 407 (1997)].Google Scholar
  5. 5.
    V. F. Agekyan, A. Yu. Serov, and Yu. A. Stepanov, Fiz. Tverd. Tela (St. Petersburg) 42, 1786 (2000) [Phys. Solid State 42, 1832 (2000)].Google Scholar
  6. 6.
    I. Akai, T. Sato, A. Tanji, et al., J. Lumin. 87–89, 516 (2000).Google Scholar
  7. 7.
    I. Kh. Akopyan, B. V. Novikov, M. M. Pimonenko, and B. S. Razbirin, Pis’ma Zh. Éksp. Teor. Fiz. 17(3), 419 (1973) [JETP Lett. 17, 299 (1973)].Google Scholar
  8. 8.
    Z. K. Tang, Y. Nozue, and T. Goto, J. Phys. Soc. Jpn. 60, 2090 (1991).CrossRefGoogle Scholar
  9. 9.
    V. F. Agekyan and A. Yu. Serov, Fiz. Tverd. Tela (St. Petersburg) 38, 122 (1996) [Phys. Solid State 38, 65 (1996)].Google Scholar
  10. 10.
    A. Yamamoto, H. Nakahara, M. Yoshihara, and T. Goto, J. Phys. Soc. Jpn. 67, 2120 (1998).Google Scholar
  11. 11.
    A. Nagai, K. Okamura, and T. Ishihara, Physica B (Amsterdam) 227, 346 (1996).ADSGoogle Scholar
  12. 12.
    N. Ohno, K. Nakamura, and Y. Nakai, J. Phys. Soc. Jpn. 55, 3659 (1986).Google Scholar
  13. 13.
    N. Ohno and M. Itoh, J. Phys. Soc. Jpn. 62, 2966 (1993).CrossRefGoogle Scholar
  14. 14.
    T. Komatsu, D. Kim, T. Kobayashi, et al., Surf. Rev. Lett. 3, 1127 (1996).CrossRefGoogle Scholar
  15. 15.
    T. Komatsu, T. Iida, K. Mirayama, et al., Mol. Cryst. Liq. Cryst. 37, 218 (1992).Google Scholar
  16. 16.
    T. Komatsu, T. Karasawa, I. Akai, and T. Iida, J. Lumin. 70, 448 (1996).Google Scholar
  17. 17.
    T. Komatsu, T. Iida, I. Akai, and V. F. Agekyan, Fiz. Tverd. Tela (St. Petersburg) 37, 2433 (1995) [Phys. Solid State 37, 1332 (1995)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • V. F. Agekyan
    • 1
  • I. Akai
    • 2
  • T. Karasawa
    • 2
  1. 1.Fock Institute of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia
  2. 2.Department of PhysicsOsaka City UniversitySugimotoJapan

Personalised recommendations