Quantum and classical binomial distributions for the charge transmitted through coherent conductor

  • G. B. Lesovik
  • N. M. Chtchelkatchev
Condensed Matter

Abstract

We discuss controversial results for the statistics of charge transport through coherent conductors. Two distribution functions for the charge transmitted was obtained previously, one actually coincides with classical binomial distribution, the other is different, and we call it here quantum binomial distribution. We show that high-order charge correlators, determined by the either distribution functions, all can be measured in different setups. The high-order current correlators, starting with the third order, reveal (missed in previous studies) special oscillating frequency dependence on the scale of the inverted time flight from the obstacle to the measuring point. Depending on setup, the oscillating terms give substantially different contributions.

PACS numbers

05.60.Gg 72.10.Bg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Levitov, cond-mat/0210284.Google Scholar
  2. 2.
    L. S. Levitov and G. B. Lesovik, Pis’ma Zh. Éksp. Teor. Fiz. 55, 534 (1992) [JETP Lett. 55, 555 (1992)].Google Scholar
  3. 3.
    C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 72, 724 (1994); L. Saminadayar, D. C. Glattli, Y. Jin, et al., Phys. Rev. Lett. 79, 2526 (1997); R. de-Picciotto, M. Reznikov, M. Heiblum, et al., Nature 389, 162 (1997).ADSGoogle Scholar
  4. 4.
    L. S. Levitov and G. B. Lesovik, cond-mat/9401004; L. S. Levitov, H. W. Lee, and G. B. Lesovik, J. Math. Phys. 37, 4845 (1996).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    L. S. Levitov and G. B. Lesovik, Pis’ma Zh. Éksp. Teor. Fiz. 58, 225 (1993) [JETP Lett. 58, 230 (1993)].Google Scholar
  6. 6.
    G. B. Lesovik, Pis’ma Zh. Éksp. Teor. Fiz. 49, 513 (1989) [JETP Lett. 49, 592 (1989)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • G. B. Lesovik
    • 1
  • N. M. Chtchelkatchev
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia

Personalised recommendations