Advertisement

Evolution of the cosmological constant in effective gravity

  • G. E. Volovik
Gravity, Astrophysics

Abstract

In contrast to the phenomenon of nullification of the cosmological constant in equilibrium vacuum, which is the general property of any quantum vacuum, there are many options in modifying the Einstein equation to allow the cosmological constant to evolve in a nonequilibrium vacuum. An attempt is made to extend the Einstein equation in the direction suggested by the condensed matter analogy of the quantum vacuum. Different scenarios are found depending on the behavior of and the relation between the relaxation parameters involved, some of these scenarios having been discussed in the literature. One of them reproduces the scenario in which the effective cosmological constant emerges as a constant of integration. The second one describes the situation when, after the cosmological phase transition, the cosmological constant drops from zero to a negative value; this scenario describes the relaxation from this big negative value back to zero and then to a small positive value. In the third example, the relaxation time is not a constant but depends on matter; this scenario demonstrates that vacuum energy (or its fraction) can play the role of cold dark matter.

PACS numbers

04.20.Cv 98.80.Es 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).CrossRefADSGoogle Scholar
  3. 3.
    P. J. E. Peebles and B. Ratra, astro-ph/0207347.Google Scholar
  4. 4.
    T. Padmanabhan, hep-th/0212290.Google Scholar
  5. 5.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).Google Scholar
  6. 6.
    R. B. Laughlin, gr-qc/0302028.Google Scholar
  7. 7.
    U. Alam, V. Sahni, and A. A. Starobinsky, astro-ph/0302302.Google Scholar
  8. 8.
    A. Einstein, Sitzungsber. K. Preuss. Akad. Wiss. 1, 142 (1917).Google Scholar
  9. 9.
    M. Bronstein, Phys. Z. Sowjetunion 3, 73 (1933).zbMATHGoogle Scholar
  10. 10.
    A. D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1968) [Sov. Phys. Dokl. 12, 1040 (1968)].Google Scholar
  11. 11.
    Ya. B. Zel’dovich, Pis’ma Zh. Éksp. Teor. Fiz. 6, 922 (1967) [JETP Lett. 6, 345 (1967)].Google Scholar
  12. 12.
    I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (Nauka, Moscow, 1965; Benjamin, New York, 1965).Google Scholar
  13. 13.
    N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Clarendon Press, Oxford, 2001).Google Scholar
  14. 14.
    D. Pogosyan, J. R. Bond, and C. R. Contaldi, astro-ph/0301310.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low-Temperature LaboratoryHelsinki University of TechnologyHUTFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations