Advertisement

Semiconductors

, Volume 37, Issue 5, pp 564–568 | Cite as

Model of multi-island single-electron arrays based on the Monte Carlo method

  • I. I. Abramov
  • S. A. Ignatenko
  • E. G. Novik
Low-Dimensional Systems
  • 40 Downloads

Abstract

A two-dimensional model of multi-island single-electron arrays, based on a numerical solution to the Poisson equation and the Monte Carlo method, is suggested. The adequacy of the model is shown by com-paring the I-V characteristics calculated for two different five-island structures with experimental data. This model was used to assess quantitatively a number of geometrical parameters of a single-electron device structure, which are difficult to determine experimentally.

Keywords

Experimental Data Monte Carlo Method Geometrical Parameter Magnetic Material Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hockney and J. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1984; Mir, Moscow, 1987).Google Scholar
  2. 2.
    Yu. K. Pozhela, Physics of High-Speed Transistors (Mokslas, Vilnius, 1989).Google Scholar
  3. 3.
    M. V. Fishetti and S. E. Laux, Phys. Rev. B 38, 9721 (1988).ADSGoogle Scholar
  4. 4.
    M. V. Fishetti and S. E. Laux, IEEE Trans. Electron Devices 38, 650 (1991).ADSGoogle Scholar
  5. 5.
    H. Kosina, M. Nedjalkov, and S. Selberherr, IEEE Trans. Electron Devices 47, 1898 (2000).CrossRefGoogle Scholar
  6. 6.
    Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, Ed. by H. Grabert and M. H. Devoret (Plenum, New York, 1992); NATO ASI Ser., Ser. B 294 (1992).Google Scholar
  7. 7.
    I. I. Abramov and E. G. Novik, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 1388 (1999) [Semiconductors 33, 1254 (1999)].Google Scholar
  8. 8.
    N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev, and S. I. Serdyukova, Zh. Éksp. Teor. Fiz. 95, 1010 (1989) [Sov. Phys. JETP 68, 581 (1989)].ADSGoogle Scholar
  9. 9.
    R. H. Chen, A. N. Korotkov, and K. K. Likharev, Appl. Phys. Lett. 68, 1954 (1996).ADSGoogle Scholar
  10. 10.
    I. I. Abramov and E. G. Novik, Numerical Simulation of Metallic Single-Electron Transistors (Bestprint, Minsk, 2000).Google Scholar
  11. 11.
    I. I. Abramov and E. G. Novik, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1014 (2000) [Semiconductors 34, 975 (2000)].Google Scholar
  12. 12.
    I. I. Abramov and E. G. Novik, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 489 (2001) [Semiconductors 35, 474 (2001)].Google Scholar
  13. 13.
    I. I. Abramov, S. A. Ignatenko, and E. G. Novik, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 1272 (2002) [Semiconductors 36, 1192 (2002)].Google Scholar
  14. 14.
    S. Altmeyer, A. Hamidi, B. Spangenberg, and H. Kurz, J. Appl. Phys. 81, 8118 (1997).CrossRefADSGoogle Scholar
  15. 15.
    H. Ahmed, J. Vac. Sci. Technol. B 15, 2101 (1997).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • I. I. Abramov
    • 1
  • S. A. Ignatenko
    • 1
  • E. G. Novik
    • 1
  1. 1.Belarussian State University of Information ScienceRadio Engineering, and ElectronicsMinskBelarus

Personalised recommendations