Advertisement

Statefinder—A new geometrical diagnostic of dark energy

  • V. Sahni
  • T. D. Saini
  • A. A. Starobinsky
  • U. Alam
Gravity, Astrophysics

Abstract

We introduce a new cosmological diagnostic pair {r, s} called the Statefinder. The Statefinder is a geometrical diagnostic and allows us to characterize the properties of dark energy in a model-independent manner. The Statefinder is dimensionless and is constructed from the scale factor of the Universe and its time derivatives only. The parameter r forms the next step in the hierarchy of geometrical cosmological parameters after the Hubble parameter H and the deceleration parameter q, while a is a linear combination of q and r chosen in such a way that it does not depend upon the dark energy density. The Statefinder pair {r, s} is algebraically related to the equation of state of dark energy and its first time derivative. The Statefinder pair is calculated for a number of existing models of dark energy having both constant and variable w. For the case of a cosmological constant, the Statefinder acquires a particularly simple form. We demonstrate that the Statefinder diagnostic can effectively differentiate between different forms of dark energy. We also show that the mean Statefinder pair can be determined to very high accuracy from a SNAP-type experiment.

PACS numbers

98.80.Es 95.35.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Perlmutter, G. Aldering, G. Goldhaber, et al., Astrophys. J. 517, 565 (1999); A. Riess, A. V. Filippenko, P. Challis, et al., Astron. J. 116, 1009 (1998).CrossRefADSGoogle Scholar
  2. 2.
    P. de Bernardis, P. A. R. Ade, J. J. Bock, et al., Nature 404, 955 (2000); A. E. Lange, P. A. R. Ade, J. J. Bock, et al., Phys. Rev. D 63, 042001 (2001); A. Balbi, P. A. R. Ade, J. J. Bock, et al., Astrophys. J. 545, L1 (2000).ADSGoogle Scholar
  3. 3.
    A. Benoit, P. Ade, A. Amblard, et al., Astron. Astrophys. 399, L25 (2003); astro-ph/0210306 (2002).ADSGoogle Scholar
  4. 4.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000); astro-ph/9904398 (1999); V. Sahni, Class. Quantum Grav. 19, 3435 (2002).CrossRefADSGoogle Scholar
  5. 5.
    J. A. Peacock, S. Cole, P. Norberg, et al., Nature 410, 169 (2001); P. J. E. Peebles and B. Ratra, astro-ph/0207347 (2002).CrossRefADSGoogle Scholar
  6. 6.
    W. J. Percival, W. Sutherland, J. A. Peacock, et al., astro-ph/0206256 (2002).Google Scholar
  7. 7.
    R. Bean and A. Melchiorri, Phys. Rev. D 65, 041302 (2002); A. Melchiorri, L. Mersini, C. J. Odman, and M. Trodden, astro-ph/0211522 (2002); D. Pogosyan, J. R. Bond, and C. R. Contaldi, astro-ph/0301310 (2003).Google Scholar
  8. 8.
    A. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001).ADSGoogle Scholar
  9. 9.
    G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000); C. Deffayet, G. Dvali, and G. Gabadadze, Phys. Rev. D 65, 044023 (2002).ADSMathSciNetGoogle Scholar
  10. 10.
    V. Sahni and Yu. V. Shtanov, astro-ph/0202346 (2002); U. Alam and V. Sahni, astro-ph/0209443 (2002).Google Scholar
  11. 11.
    A. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 68, 721 (1998) [JETP Lett. 68, 757 (1998)]; D. Huterer and M. S. Turner, Phys. Rev. D 60, 081301 (1999); T. Nakamura and T. Chiba, Mon. Not. R. Astron. Soc. 306, 696 (1999).Google Scholar
  12. 12.
    T. D. Saini, S. Raychaudhury, V. Sahni, and A. A. Starobinsky, Phys. Rev. Lett. 85, 1162 (2000).CrossRefADSGoogle Scholar
  13. 13.
    T. Chiba and T. Nakamura, Phys. Rev. D 62, 121301 (2000); I. Maor, R. Brustein, and P. J. Steinhardt, Phys. Rev. Lett. 86, 6 (2001); J. Weller and A. Albrecht, Phys. Rev. Lett. 86, 1939 (2001); J. Wang and P. M. Garnavich, Astrophys. J. 552, 445 (2001); J. Weller and A. Albrecht, Phys. Rev. D 65, 103512 (2002); M. Tegmark, Phys. Rev. D 66, 103507 (2002); B. F. Gerke and G. Efstathiou, Mon. Not. R. Astron. Soc. 335, 33 (2002); P. S. Corasaniti and E. J. Copeland, astro-ph/0205544 (2002); E. V. Linder, astro-ph/0208512 (2002).Google Scholar
  14. 14.
    B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A. Starobinsky, Phys. Rev. Lett. 85, 2236 (2000).CrossRefADSGoogle Scholar
  15. 15.
    U. Alam, T. D. Saini, V. Sahni, and A. A. Starobinsky, astro-ph/0303009 (2003).Google Scholar
  16. 16.
    T. Chiba and N. Nakamura, Prog. Theor. Phys. 100, 1077 (1998).CrossRefADSGoogle Scholar
  17. 17.
    L. A. Urena-Lopez and T. Matos, Phys. Rev. D 62, 081302 (2000); astro-ph/0003364 (2000).Google Scholar
  18. 18.
    I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999); P. J. Steinhardt, L. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999).CrossRefADSGoogle Scholar
  19. 19.
    B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).CrossRefADSGoogle Scholar
  20. 20.
    R. Bean and A. Melchiorri, Phys. Rev. D 64, 103508 (2001).Google Scholar
  21. 21.
    G. Aldering and the SNAP collaboration, astro-ph/0209550 (2002).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • V. Sahni
    • 1
  • T. D. Saini
    • 1
  • A. A. Starobinsky
    • 2
  • U. Alam
    • 1
  1. 1.Inter-University Centre for Astronomy and AstrophysicsPunéIndia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations