Optics and Spectroscopy

, Volume 94, Issue 4, pp 595–599

Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: Effect of correlation and polydispersity of droplets

  • V. A. Loiko
  • V. P. Dick
Physical and Quantum Optics


A method for computing the coherent transmittance of a film of polymer dispersed nematic liquid crystals aligned by an external field in the case of an oblique incidence of light is developed, and a theoretical analysis of this quantity is performed. The effects of close packing are considered in terms of the interference approximation of the theory of multiple wave scattering. The correlation arising in the spatial distribution of polydisperse droplets is taken into account by introducing partial distribution functions. It is shown that an increase in the concentration of liquid crystal droplets is accompanied by an increase in the coherent transmittance of the film.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Ivanov, V. A. Loiko, and V. P. Dick, Propagation of Light in Close-Packed Dispersive Media (Nauka i Tekhnika, Minsk, 1988).Google Scholar
  2. 2.
    P. S. Drzaic, Liquid Crystal Dispersions (World Sci., Singapore, 1995).Google Scholar
  3. 3.
    L. Tsang, J. A. Kong, and T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).Google Scholar
  4. 4.
    J. R. Kelly and Wu Wei, Liq. Cryst. 14, 1683 (1993).CrossRefGoogle Scholar
  5. 5.
    C. Zumer, A. Golemme, and J. Doane, J. Opt. Soc. Am. A 6, 403 (1989).ADSGoogle Scholar
  6. 6.
    J. B. Whitehead, S. Zumer, and J. W. Doane, J. Appl. Phys. 73, 1057 (1993).CrossRefADSGoogle Scholar
  7. 7.
    K. B. Kyu and K. S. Hee, J. Polym. Sci. 36, 55 (1998).Google Scholar
  8. 8.
    N. Hateshi, S. Sockio, and A. Yuji, Jpn. J. Appl. Phys. 29, 522 (1990).CrossRefGoogle Scholar
  9. 9.
    P. G. Montgomery and N. A. Vaz, Phys. Rev. A 40, 6580 (1989).CrossRefADSGoogle Scholar
  10. 10.
    F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, Opt. Lett. 21, 95 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    B. G. Wu, J. L. West, and J. W. Doane, J. Appl. Phys. 62, 3925 (1987).CrossRefADSGoogle Scholar
  12. 12.
    V. P. Dick and A. P. Ivanov, J. Opt. Soc. Am. A 16, 1034 (1999).CrossRefADSGoogle Scholar
  13. 13.
    V. P. Dick and V. A. Loiko, Opt. Spektrosk. 91, 655 (2001) [Opt. Spectrosc. 91, 618 (2001)].CrossRefGoogle Scholar
  14. 14.
    R. J. Baxter, J. Chem. Phys. 52, 4553 (1970).CrossRefADSGoogle Scholar
  15. 15.
    K. N. Ding and L. Tsang, Prog. Electromagn. Res. 1, 241 (1989).Google Scholar
  16. 16.
    E. K. Naumenko and A. P. Prishivalko, Zh. Prikl. Spektrosk. 14, 494 (1971).Google Scholar
  17. 17.
    L. Lucchetti and F. Simoni, J. Appl. Phys. 88, 3934 (2000).CrossRefADSGoogle Scholar
  18. 18.
    U. Maschke, J. M. Gloaguen, J. D. Turgis, and X. Coqueret, Mol. Cryst. Liq. Cryst. 282, 407 (1996).CrossRefGoogle Scholar
  19. 19.
    F. Gyselink, U. Maschke, A. Traisnel, and X. Coqueret, Liq. Cryst. 27, 421 (2000).CrossRefGoogle Scholar
  20. 20.
    H. Fujikake, K. Takizawa, H. Kikuchi, et al., Jpn. J. Appl. Phys. 37, 895 (1998).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • V. A. Loiko
    • 1
  • V. P. Dick
    • 1
  1. 1.Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations