Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

  • NANP-2001 Proceedings of the Third International Conference on Nonaccelerator New Physics Joint Institute for Nuclear Research, Dubna, Russia, June 19–23, 2001
  • Published:

A cryogenic underground observatory for rare events: CUORE, an update

Abstract

CUORE is a proposed tightly packed array of 1000 TeO2 bolometers, each being a cube 5 cm on a side with a mass of 750 g. The array consists of 25 vertical towers, arranged in a square of 5 towers by 5 towers, each containing ten layers of four crystals. The design of the detector is optimized for ultralow-background searches for neutrinoless double beta decay of 130Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals of various sizes (MIBETA) has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. H. Furry, Phys. Rev. 56, 1184 (1939).

  2. 2.

    H. Primakoff and S. P. Rosen, Rep. Prog. Phys. 22, 121 (1959); Phys. Rev. 184, 1925 (1969).

  3. 3.

    W. C. Haxton and G. J. Stevenson, Jr., Prog. Part Nucl. Phys. 12, 409 (1984); F. T. Avignone III and R. L. Brodzinski, Prog. Part. Nucl. Phys. 21, 99 (1988); M. Moe and P. Vogel, Annu. Rev. Nucl. Part. Sci. 44, 247 (1994).

  4. 4.

    A. Morales, Nucl. Phys. B (Proc. Suppl.) 77, 335 (1999); H. Ejiri, Int. J. Mod. Phys. E 6, 1 (1997); V. Tretyak and Y. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995).

  5. 5.

    E. Fiorini et al., Phys. Lett. B 25B, 602 (1967); Lett. Nuovo Cimento 3, 149 (1970).

  6. 6.

    A. A. Vasenko et al., Mod. Phys. Lett. A 5, 1299 (1990); F. T. Avignone III et al., Phys. Lett. B 256, 559 (1991).

  7. 7.

    L. Baudis et al., Phys. Rev. Lett. 83, 41 (1999).

  8. 8.

    C. E. Aalseth et al., Phys. Rev. D 65, 092007 (2002); Yad. Fiz. 63, 1299, 1341 (2000) [Phys. At. Nucl. 63, 1225, 1268 (2000)].

  9. 9.

    E. Cauries et al., Phys. Rev. Lett. 77, 1954 (1996); P. B. Racha et al., Phys. Rev. Lett. 76, 2642 (1996).

  10. 10.

    Y. Fukuda et al., Phys. Rev. Lett. 82, 1810, 2430, 2644 (1999).

  11. 11.

    Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002); S. Fukuda et al., Phys. Lett. B 539, 179 (2002); GALLEX Collab. (W. Hampel et al.), Phys. Lett. B 388, 384 (1996); SAGE Collab. (G. N. Abdurashitov et al.), Phys. Rev. Lett. 77, 4708 (1996); B. T. Cleveland et al., Astrophys. J. 496, 505 (1998); R. Davis, Prog. Part. Nucl. Phys. 32, 13 (1994).

  12. 12.

    H. Georgi and S. L. Glashow, Phys. Rev. D 61, 097301 (2000).

  13. 13.

    G. Bellini et al., nucl-ex/0007012.

  14. 14.

    M. Danilov et al., Phys. Lett. B 480, 12 (2000).

  15. 15.

    H. V. Klapdor-Kleingrothaus, J. Hellnig, and M. Hirsch, J. Phys. G 24, 483 (1998).

  16. 16.

    H. Ejiri et al., Phys. Rev. Lett. 85, 2917 (2000).

  17. 17.

    A. Alessandrello et al., Phys. Lett. B 486, 13 (2000).

  18. 18.

    A. Alessandrello et al., Nucl. Phys. B (Proc. Suppl.) 87, 78 (2000).

  19. 19.

    M. Moe and P. Vogel, Annu. Rev. Nucl. Part. Sci. 44, 247 (1994).

  20. 20.

    J. Engel et al., Phys. Lett. B 225, 5 (1989).

  21. 21.

    P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986); J. Engel, P. Vogel, and M. R. Zirnbauer, Phys. Rev. C 37, 731 (1988).

  22. 22.

    T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).

  23. 23.

    A. Staudt, K. Muto, and H. V. Klapdor-Kleingrothaus, Europhys. Lett. 13, 31 (1990); K. Muto, E. Bender, and H. V. Klapdor-Kleingrothaus, Z. Phys. A 334, 177, 187 (1989).

  24. 24.

    J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

  25. 25.

    A. Faessler et al., J. Phys. G 24, 2139 (1998).

  26. 26.

    C. Barbero, J. M. Krmpotic, and D. Tadic, Nucl. Phys. A 650, 485 (1999).

  27. 27.

    D. Twerenbold, Rep. Prog. Phys. 59, 349 (1996); N. Booth, B. Cabrera, and E. Fiorini, Annu. Rev. Nucl. Sci. 46, 471 (1996).

  28. 28.

    E. Norman and R. J. McDonald, Presentation Made to the CUORE Collaboration, Milan, Italy, 2000.

  29. 29.

    R. J. Creswick et al., Phys. Lett. B 427, 235 (1998).

  30. 30.

    F. T. Avignone III et al., Phys. Rev. Lett. 81, 5068 (1998).

  31. 31.

    C. E. Aalseth et al., in Proceedings of the 5th International Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, Marina Beach, California, Febr. 20–22, 2002 (World Sci., Singapore) (in press).

Download references

Author information

Additional information

From Yadernaya Fizika, Vol. 66, No. 3, 2003, pp. 480–485.

Original English Text Copyright © 2003 by Alessandrello, Arnaboldi, Avignone III, Beeman, Barucci, Balata, Brofferio, Bucci, Cebrian, Creswick, Capelli, Carbone, Cremonesi, de Ward, Fiorini, Farach, Frossati, Giuliani, Giugni, Haller, Irastorza, McDonald, Morales, Norman, Negri, Nucciotti, Pedretti, Pobes, Palmieri, Pavan, Pessina, Pirro, Previtali, Rosenfeld, Smith, Sisti, Ventura, Vanzini, Zanotti.

The authors presents the CUORE Collaboration

This article was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alessandrello, A., Arnaboldi, C., Avignone, F.T. et al. A cryogenic underground observatory for rare events: CUORE, an update. Phys. Atom. Nuclei 66, 452–457 (2003). https://doi.org/10.1134/1.1563703

Download citation

Keywords

  • Elementary Particle
  • Dark Matter
  • Monte Carlo Simulation
  • Solar Axion
  • Rare Event