, Volume 37, Issue 3, pp 239–248 | Cite as

Temperature dependence of the band structure of 3C, 2H, 4H, and 6H SiC polytypes

  • S. M. Zubkova
  • L. N. Rusina
  • E. V. Smelyanskaya
Electronic and Optical Properties of Semiconductors


The temperature dependences of significant energy extrema at the high-symmetry points Γ, X, L, K, M, A, and H of the Brillouin zone in the cubic and hexagonal modifications of SiC, as well as the energies of the main interband transitions at these points, were calculated for the first time by the empirical-pseudopotential method. The effect of the temperature dependence of the electron-phonon interaction on the crystal band structure was taken into account via the Debye-Waller factors, and the contribution of the linear expansion of the lattice was accounted for via the temperature dependence of the linear-expansion coefficient. The special features of the temperature dependences of the energy levels and of energies of the interband and intraband transitions are analyzed in detail. The results of the calculations are in good agreement with the known experimental data on the characteristics of SiC-based p-n structures operating in the breakdown mode. For example, the temperature coefficient of the energy of the X1cX3c transition, which is responsible for the narrow violet band in the breakdown-electroluminescence spectra of reverse-biased p-n junctions, was found to be significantly smaller than the temperature coefficients for the interband transitions (from the conduction to valence band). This fact is quite consistent with the experimental curve of the temperature coefficient of the emission spectrum, which has a minimum in the same wavelength range.


Band Structure Brillouin Zone Temperature Coefficient Linear Expansion Interband Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Ivanov and V. E. Chelnokov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 29, 1921 (1995) [Semiconductors 29, 1003 (1995)].Google Scholar
  2. 2.
    F. Engelbrecht, J. Zeman, G. Wellenhofer, et al., Phys. Rev. B 56, 7348 (1997).CrossRefADSGoogle Scholar
  3. 3.
    V. V. Sobolev and V. V. Nemoshkalenko, Electronic Structure of Solids in the Region of Fundamental Absorption (Naukova Dumka, Kiev, 1992), Chap. 2, p. 403.Google Scholar
  4. 4.
    Ch. Keffer, T. M. Hayes, and A. Bienenstock, Phys. Rev. Lett. 21, 1676 (1968).CrossRefADSGoogle Scholar
  5. 5.
    Y. W. Tsang and M. L. Cohen, Phys. Rev. B 3, 1254 (1971).CrossRefADSGoogle Scholar
  6. 6.
    H. Y. Fan, Phys. Rev. 82, 900 (1951).ADSzbMATHGoogle Scholar
  7. 7.
    C. K. Kim, P. Lautenschlager, and M. Cardona, Solid State Commun. 59, 797 (1986).CrossRefGoogle Scholar
  8. 8.
    K. Baumann, Phys. Status Solidi B 63, K71 (1974).Google Scholar
  9. 9.
    Y. F. Tsay, B. Gong, S. S. Mitra, and J. F. Vetelino, Phys. Rev. B 6, 2330 (1972).CrossRefADSGoogle Scholar
  10. 10.
    Y. F. Tsay, S. S. Mitra, and J. F. Vetelino, J. Phys. Chem. Solids 34, 2167 (1973).Google Scholar
  11. 11.
    D. Auvergne, J. Camassel, H. Mathieu, and M. Cardona, Phys. Rev. B 9, 5168 (1974).CrossRefADSGoogle Scholar
  12. 12.
    P. B. Allen and M. Cardona, Phys. Rev. B 23, 1495 (1981).ADSGoogle Scholar
  13. 13.
    P. B. Allen and M. Cardona, Phys. Rev. B 27, 4760 (1983).CrossRefADSGoogle Scholar
  14. 14.
    P. Lautenschlager, P. B. Allen, and M. Cardona, Phys. Rev. B 31, 2163 (1985).CrossRefADSGoogle Scholar
  15. 15.
    A. Zywietz, K. Karch, and F. Bechstedt, Phys. Rev. B 54, 1791 (1996).CrossRefADSGoogle Scholar
  16. 16.
    H.-G. Junginger and W. Haeringen, Phys. Status Solidi 37, 709 (1970).Google Scholar
  17. 17.
    J. F. Vetelino, S. P. Gour, and S. S. Mitra, Phys. Rev. B 5, 2360 (1972).CrossRefADSGoogle Scholar
  18. 18.
    P. Kackell, B. Wenzien, and F. Bechstedt, Phys. Rev. B 50, 10761 (1994).Google Scholar
  19. 19.
    Physics of Group IV Elements and III-V Compounds of Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Ed. by O. Modelung, M. Schultz, and H. Weiss (Springer, New York, 1982), New Series, Group III, Vol. 17a.Google Scholar
  20. 20.
    M. Rohlung, P. Kruger, and J. Pollmann, Phys. Rev. B 48, 17791 (1993).Google Scholar
  21. 21.
    I. N. Remediakis and E. Kaxiras, Phys. Rev. B 59, 5536 (1999).CrossRefADSGoogle Scholar
  22. 22.
    C. H. Park, B.-Ho Cheong, K.-Ho Lee, and K. J. Chang, Phys. Rev. B 49, 4485 (1994).ADSGoogle Scholar
  23. 23.
    Y. Fujino, H. Sato, and N. Otsuka, in Materials Problem Solving with Transmission Electron Microscope, Ed. by L. W. Hobbs, K. W. Westmacott, and D. B. Williams (Materials Research Society, Pittsburgh, 1986); Mater. Res. Soc. Symp. Proc. 62, 349 (1986).Google Scholar
  24. 24.
    V. I. Gavrilenko, A. V. Postnikov, N. I. Klyui, and V. G. Litovchenko, Phys. Status Solidi B 162, 477 (1990).Google Scholar
  25. 25.
    W. J. Choyke and L. Patrick, Phys. Rev. 105, 1721 (1957).CrossRefADSGoogle Scholar
  26. 26.
    A. M. Genkin and V. N. Rodionov, Fiz. Tekh. Poluprovodn. (Leningrad) 13, 789 (1979) [Sov. Phys. Semicond. 13, 463 (1979)].Google Scholar
  27. 27.
    M. V. Belous, A. M. Genkin, and V. K. Genkina, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 727 (1999) [Semiconductors 33, 672 (1999)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • S. M. Zubkova
    • 1
  • L. N. Rusina
    • 1
  • E. V. Smelyanskaya
    • 2
  1. 1.Frantsevich Institute of Materials Science ProblemsNational Academy of Sciences of UkraineKiev-142Ukraine
  2. 2.National Technical University of Ukraine “Kiev Polytechnical Institute”KievUkraine

Personalised recommendations