Optics and Spectroscopy

, Volume 94, Issue 2, pp 235–244 | Cite as

Generation of singular beams in uniaxial crystals

  • A. V. Volyar
  • T. A. Fadeeva
Physical and Quantum Optics


The process of generation and transformation of the structure of singular beams both coherent and incoherent, in a crystal-polarization compensator-polarizer system is studied. It is shown that this system can transform the topological charge of the initial beam. The value of the transformed charge depends both on the structure of the initial beam and on its polarization. The initial singular beams, transferring topological multipoles, are shown to acquire unique properties after passing through the system. This system, in particular, makes it possible to control the position of bound optical vortices and the magnitudes of their angular momenta, which may find practical application in devices for trapping, transportation, and mutual arrangement of microparticles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Soskin and N. V. Vasnetsov, Prog. Opt. 42, 219 (2001).Google Scholar
  2. 2.
    E. G. Abramochkin and V. G. Volostnikov, Opt. Commun. 102, 336 (1993).CrossRefADSGoogle Scholar
  3. 3.
    L. Allen, M. Paget, and M. Babiker, Prog. Opt. 39, 291 (1999).Google Scholar
  4. 4.
    R. Oron, N. Davidson, and A. Friesem, Prog. Opt. 42, 325 (2001).Google Scholar
  5. 5.
    V. G. Shvedov, Ya. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, Pis’ma Zh. Tekh. Fiz. 28(3), 87 (2002) [Tech. Phys. Lett. 28 (3), 256 (2002)].Google Scholar
  6. 6.
    J. F. Nye, Natural Focusing and Fine Structure of Light (Inst. of Physics, Bristol and Philadelphia, 1999).MATHGoogle Scholar
  7. 7.
    P. Hillion, J. Phys. A 32, y2817 (1999).Google Scholar
  8. 8.
    M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).Google Scholar
  9. 9.
    H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Volyar, V. G. Shvedov, and T. A. Fadeeva, Pis’ma Zh. Tekh. Fiz. 25(5), 87 (1999) [Tech. Phys. Lett. 25 (3), 203 (1999)].Google Scholar
  11. 11.
    R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977; Mir, Moscow, 1981).Google Scholar
  12. 12.
    É. Édser, Optics (Estestvoispytatel’, St. Petersburg, 1914).Google Scholar
  13. 13.
    A. V. Volyar and T. A. Fadeeva, Opt. Spektrosk. 92, 285 (2002) [Opt. Spectrosc. 92, 253 (2002)].CrossRefGoogle Scholar
  14. 14.
    M. V. Berry, J. Mod. Opt. 45, 1845 (1998).ADSGoogle Scholar
  15. 15.
    C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, Quantum Electron. Optoelectron. 3, 500 (2000).Google Scholar
  16. 16.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Elementary Functions (Nauka, Moscow, 1981).MATHGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • A. V. Volyar
    • 1
  • T. A. Fadeeva
    • 1
  1. 1.Simferopol’ State UniversitySimferopol’Ukraine

Personalised recommendations