Advertisement

Multicomponent dense electron gas as a model of Si MOSFET

  • S. V. Iordanski
  • A. Kashuba
Condensed Matter

Abstract

We solve a 2D model of N-component dense electron gas in the limit N→∞ and in the range of the Coulomb interaction parameter N−3/2r s ≪1. The quasiparticle interaction on the Fermi circle vanishes as ℏ2/Nm. The ground-state energy and the effective mass are found as series in powers of r s 2/3 . In the quantum Hall state on the lowest Landau level at integer filling 1≪ν<N, the charge-activation-energy gap and the exchange constant are Δ=log(r s N3/2)ℏωH/ν and J=0.66ℏωH/ν.

PACS numbers

71.10.Ca 73.43.Cd 85.30.Tv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).CrossRefADSGoogle Scholar
  2. 2.
    E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).CrossRefADSGoogle Scholar
  3. 3.
    V. M. Pudalov, M. E. Gershenson, H. Kojima, et al., Phys. Rev. Lett. 88, 196404 (2002).Google Scholar
  4. 4.
    A. A. Shashkin, S. W. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).Google Scholar
  5. 5.
    M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957); K. Sawada, Phys. Rev. 106, 372 (1957).ADSMathSciNetGoogle Scholar
  6. 6.
    M. Gell-Mann, Phys. Rev. 106, 369 (1957).ADSMATHMathSciNetGoogle Scholar
  7. 7.
    Yu. A. Bychkov, S. V. Iordanskii, and G. M. Éliashberg, Pis’ma Zh. Éksp. Teor. Fiz. 33, 152 (1981) [JETP Lett. 33, 143 (1981)]; C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).Google Scholar
  8. 8.
    J. L. Smith and P. J. Stiles, Phys. Rev. Lett. 29, 102 (1972).ADSGoogle Scholar
  9. 9.
    V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov, cond-mat/0202505.Google Scholar
  10. 10.
    Y. Takada, Phys. Rev. B 43, 5962 (1991).ADSGoogle Scholar
  11. 11.
    L. L. Foldy, Phys. Rev. 124, 649 (1961).CrossRefADSGoogle Scholar
  12. 12.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975).Google Scholar
  13. 13.
    D. Pines and P. Nozieres, Theory of Quantum Liquids (Benjamin, New York, 1966; Mir, Moscow, 1967).Google Scholar
  14. 15.
    T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys. Rev. Lett. 82, 3875 (1999).CrossRefADSGoogle Scholar
  15. 16.
    The Quantum Hall Effect, Ed. by E. R. Prange and S. M. Girvin (Springer-Verlag, New York, 1990; Mir, Moscow, 1989).Google Scholar
  16. 17.
    I. L. Aleiner and L. I. Glazman, Phys. Rev. B 52, 11296 (1995).Google Scholar
  17. 18.
    S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys. Rev. B 47, 16419 (1993).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • S. V. Iordanski
    • 1
  • A. Kashuba
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations