Advertisement

Polar smectic subphases: Phase diagrams, structures and X-ray scattering

  • P. V. Dolganov
  • V. M. Zhilin
  • V. E. Dmitrienko
  • E. I. Kats
Condensed Matter

Abstract

We analyze a discrete phenomenological model accounting for phase transitions and structures of polar Smectic-C* liquid-crystalline phases. The model predicts a sequence of phases observed in experiment: antiferroelectric SmC A * –ferrielectric SmC FI1 * –antiferroelectric SmC FI2 * (three-and four-layer periodic, respectively)–incommensurate SmC α * –SmA. We find that, in the three-layer SmC FI1 * structure, both the phase and the module of the order parameter (tilt angle) differ in smectic layers. This modulation of the tilt angle (and therefore of the layer spacing d) must lead to X-ray diffraction at the wave vectors Q s =2πs/d(s=n±1/3) even for the nonresonant scattering.

PACS numbers

61.30.Eb 64.70.Md 61.10.Eq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. L. Chandani, E. Gorecka, Y. Ouchi, et al., Jpn. J. Appl. Phys., Part 2 28, L1265 (1989).Google Scholar
  2. 2.
    A. Fukuda, Y. Takanishi, T. Isozaki, et al., J. Mater. Chem. 4, 997 (1994).CrossRefGoogle Scholar
  3. 3.
    R. B. Meyer, L. Liébert, L. Strzelecki, and P. Keller, J. Phys. Lett. 36, L69 (1975).Google Scholar
  4. 4.
    P. Mach, R. Pindak, A.-M. Levelut, et al., Phys. Rev. Lett. 81, 1015 (1998).CrossRefADSGoogle Scholar
  5. 5.
    P. Mach, R. Pindak, A.-M. Levelut, et al., Phys. Rev. E 60, 6793 (1999).CrossRefADSGoogle Scholar
  6. 6.
    L. S. Hirst, S. J. Watson, H. F. Gleeson, et al., Phys. Rev. E 65, 041705 (2002).Google Scholar
  7. 7.
    P. M. Johnson, S. Pankrats, P. Mach, et al., Phys. Rev. Lett. 83, 4073 (1999).CrossRefADSGoogle Scholar
  8. 8.
    D. Schlauf, Ch. Bahr, and H. T. Nguyen, Phys. Rev. E 60, 6816 (1999).CrossRefADSGoogle Scholar
  9. 9.
    D. A. Olson, S. Pankratz, P. M. Johnson, et al., Phys. Rev. E 63, 061711 (2001).Google Scholar
  10. 10.
    Y. Takanishi, K. Hiraoka, V. Agrawal, et al., Jpn. J. Appl. Phys. 30, 2023 (1991).CrossRefGoogle Scholar
  11. 11.
    T. Isozaki, T. Fujikawa, H. Takezoe, et al., Phys. Rev. B 48, 13439 (1993).Google Scholar
  12. 12.
    S. A. Pikin, S. Hiller, and W. Haase, Mol. Cryst. Liq. Cryst. 262, 425 (1995).Google Scholar
  13. 13.
    M. Gorkunov, S. Pikin, and W. Haase, Pis’ma Zh. Éksp. Teor. Fiz. 72, 81 (2000) [JETP Lett. 72, 57 (2000)].Google Scholar
  14. 14.
    M. Čepič and B. Žekš, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 263, 61 (1995).Google Scholar
  15. 15.
    A. Roy and N. V. Madhusudana, Europhys. Lett. 36, 221 (1996).CrossRefADSGoogle Scholar
  16. 16.
    B. Rovš, M. Čepič and B. Žekš Phys. Rev. E 54, R3113 (1996).Google Scholar
  17. 17.
    A. Roy and N. V. Mathusudana, Europhys. Lett. 41, 501 (1998).CrossRefADSGoogle Scholar
  18. 18.
    B. Rovš M. Čepič and B. Žekš Phys. Rev. E 62, 3758 (2000).ADSGoogle Scholar
  19. 19.
    M. Čepič and B. Žekš, Phys. Rev. Lett. 87, 085501 (2001).Google Scholar
  20. 20.
    D. A. Olson, X. F. Han, A. Cady, and C. C. Huang, Phys. Rev. E 66, 021702 (2002).Google Scholar
  21. 21.
    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, Phys. Rev. E (in press).Google Scholar
  22. 22.
    E. Gorecka, D. Pociecha, M. Čepič, et al., Phys. Rev. E 65, 061703 (2002).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • P. V. Dolganov
    • 1
  • V. M. Zhilin
    • 1
  • V. E. Dmitrienko
    • 2
  • E. I. Kats
    • 3
    • 4
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Shubnikov Institute of CrystallographyMoscowRussia
  3. 3.Laue-Langevin InstituteGrenobleFrance
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations