Generation of strong Langmuir fields during optical breakdown of a dense gas

  • N. V. Vvedenskii
  • V. B. Gildenburg
Scientific Summaries


Results are presented from theoretical studies and computer simulations of the resonant excitation of Langmuir waves during the ionization of a homogeneous gas by high-intensity laser radiation. Two mechanisms for the formation of nonuniform resonant structures in the discharge are examined: plasma-resonance ionization instability, resulting in the density modulation along the electric field vector, and gas breakdown in the field of a transversely inhomogeneous laser beam (a Bessel beam produced by an axicon lens). In both cases, the transition of the plasma density through the critical value is accompanied by the generation of intense Langmuir waves, the formation of fast ionization fronts, and the appearance of long-lived quasi-turbulent states.

PACS numbers

52.50.Jm 52.35.−g 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer-Verlag, New York, 1978).Google Scholar
  2. 2.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  3. 3.
    V. B. Gildenburg and A. V. Kim, Zh. Éksp. Teor. Fiz. 74, 141 (1978) [Sov. Phys. JETP 47, 72 (1978)].Google Scholar
  4. 4.
    V. B. Gildenburg, in Nonlinear Waves (Nauka, Moscow, 1981), p. 87.Google Scholar
  5. 5.
    W. Wo and J. S. Degroot, Phys. Fluids 27, 475 (1984).ADSGoogle Scholar
  6. 6.
    A. L. Vikharev, V. B. Gildenburg, S. V. Golubev, et al., Zh. Éksp. Teor. Fiz. 94(4), 136 (1988) [Sov. Phys. JETP 67, 724 (1988)].ADSGoogle Scholar
  7. 7.
    V. B. Gildenburg, A. V. Kim, V. A. Krupnov, et al., IEEE Trans. Plasma Sci. 21, 34 (1993).CrossRefGoogle Scholar
  8. 8.
    S. P. Kuo, Phys. Rev. Lett. 65, 1000 (1990).ADSGoogle Scholar
  9. 9.
    W. P. Leemans, C. E. Clayton, W. B. Mori, et al., Phys. Rev. A 46, 1091 (1992).ADSGoogle Scholar
  10. 10.
    S. C. Rae, Opt. Commun. 104, 330 (1994).CrossRefADSGoogle Scholar
  11. 11.
    Yu. M. Aliev, A. V. Maximov, U. Kortshagen, et al., Phys. Rev. E 51, 6091 (1995).CrossRefADSGoogle Scholar
  12. 12.
    V. B. Gildenburg, A. G. Litvak, and N. A. Zharova, Phys. Rev. Lett. 78, 2968 (1997).ADSGoogle Scholar
  13. 13.
    T. M. Antonsen, Jr. and Z. Bian, Phys. Rev. Lett. 82, 3617 (1999).CrossRefADSGoogle Scholar
  14. 14.
    A. M. Sergeev, M. Lontano, A. V. Kim, et al., Laser Part. Beams 17, 129 (1999).CrossRefADSGoogle Scholar
  15. 15.
    L. Berge and A. Couairon, Phys. Plasmas 7, 210 (2000).ADSGoogle Scholar
  16. 16.
    C. S. Liu and V. K. Tripathi, Phys. Plasmas 7, 4360 (2000).ADSGoogle Scholar
  17. 17.
    V. B. Gildenburg and N. V. Vvedenskii, Phys. Plasmas 8, 1953 (2001).CrossRefADSGoogle Scholar
  18. 18.
    A. L. Vikharev, V. B. Gildenburg, O. A. Ivanov, and A. N. Stepanov, Fiz. Plazmy 10, 165 (1984) [Sov. J. Plasma Phys. 10, 96 (1984)].Google Scholar
  19. 19.
    V. B. Gildenburg and A. A. Solodov, Pis’ma Zh. Éksp. Teor. Fiz. 62, 535 (1995) [JETP Lett. 62, 551 (1995)].Google Scholar
  20. 20.
    V. B. Gildenburg, V. E. Semenov, and N. V. Vvedenskii, Physica D (Amsterdam) 152–153, 714 (2001).Google Scholar
  21. 21.
    N. V. Vvedenskii, V. B. Gildenburg, and A. A. Solodov, Izv. Vyssh. Uchebn. Zaved., Prikl. Neline\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)naya Din. 8, 3 (2000).Google Scholar
  22. 22.
    D. Giulietti, L. A. Gizzi, A. Giulietti, et al., Phys. Rev. Lett. 79, 3194 (1997).CrossRefADSGoogle Scholar
  23. 23.
    A. A. Babin, A. M. Kiselev, K. I. Pravdenko, et al., Usp. Fiz. Nauk 169, 80 (1999).Google Scholar
  24. 24.
    T. Ditmire, E. Springate, J. W. G. Tisch, et al., Phys. Rev. A 57, 369 (1998).CrossRefADSGoogle Scholar
  25. 25.
    A. M. Bystrov and V. B. Gildenburg, Fiz. Plazmy 27, 71 (2001) [Plasma Phys. Rep. 27, 68 (2001)].Google Scholar
  26. 26.
    M. I. Bakunov, A. M. Bystrov, and V. B. Gildenburg, Phys. Plasmas 9, 2803 (2002).CrossRefADSGoogle Scholar
  27. 27.
    V. E. Zakharov, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (É nergoatomizdat, Moscow, 1984; North-Holland, Amsterdam, 1984), Vol. 2.Google Scholar
  28. 28.
    S. V. Bulanov, L. M. Kovrizhnykh, and A. S. Sakharov, Zh. Éksp. Teor. Fiz. 72, 1810 (1977) [Sov. Phys. JETP 45, 949 (1977)].ADSGoogle Scholar
  29. 29.
    M. I. Bakunov and Yu. M. Sorokin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 32, 122 (1989).ADSGoogle Scholar
  30. 30.
    P. B. Corcum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989).ADSGoogle Scholar
  31. 31.
    N. H. Burnett and P. B. Corcum, J. Opt. Soc. Am. B 6, 1195 (1989).ADSGoogle Scholar
  32. 32.
    N. V. Vvedenskii and V. B. Gildenburg, in Proceedings of the Conference on Physics of Low-Temperature Plasmas, Petrozavodsk, 2001, Vol. 1, p. 20.Google Scholar
  33. 33.
    L. Ya. Margolin, L. Ya. Polonskii, and L. N. Pyatnitskii, Pis’ma Zh. Tekh. Fiz. 13, 218 (1987) [Sov. Tech. Phys. Lett. 13, 89 (1987)].Google Scholar
  34. 34.
    H. M. Milchberg, T. R. Clark, C. G. Durfee III, et al., Phys. Plasmas 3, 2149 (1996).CrossRefADSGoogle Scholar
  35. 35.
    V. B. Gildenburg and N. V. Vvedenskii, in Proceedings of the 29th EPS Conference on Plasma Physics and Controlled Fusion, Montreux, 2002, ECA 26B, paper no. P-2.011.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • N. V. Vvedenskii
    • 1
  • V. B. Gildenburg
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations