Vortex line representation for flows of ideal and viscous fluids

  • E. A. Kuznetsov
Plasma, Gases

Abstract

The Euler hydrodynamics describing the vortex flows of ideal fluids is shown to coincide with the equations of motion obtained for a charged compressible fluid moving under the effect of a self-consistent electromagnetic field. For the Euler equations, the passage to the Lagrange description in the new hydrodynamics is equivalent to a combined Lagrange-Euler description, i.e., to the vortex line representation [5]. Owing to the compressibility of the new hydrodynamics, the collapse of a vortex flow of an ideal fluid can be interpreted as a result of the breaking of vortex lines. The Navier-Stokes equation formulated in terms of the vortex line representation proves to be reduced to a diffusion-type equation for the Cauchy invariant with the diffusion tensor determined by the metric of this representation.

PACS numbers

47.15.Ki 47.32.Cc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Catastrophe Theory (Znanie, Moscow, 1981; Springer-Verlag, Berlin, 1986); V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1984; Springer-Verlag, Berlin, 1989).Google Scholar
  2. 2.
    E. A. Kuznetsov and V. P. Ruban, Zh. Éksp. Teor. Fiz. 118, 893 (2000) [JETP 91, 775 (2000)].Google Scholar
  3. 3.
    V. A. Zheligovsky, E. A. Kuznetsov, and O. N. Podvigina, Pis’ma Zh. Éksp. Teor. Fiz. 74, 402 (2001) [JETP Lett. 74, 367 (2001)].Google Scholar
  4. 4.
    E. A. Kuznetsov, O. N. Podvigina, and V. A. Zheligovsky, in Proceedings of IUTAH Symposium “Tubes, Sheets, and Singularities in Fluid Dynamics,” Zakopane, 2002 (in press).Google Scholar
  5. 5.
    E. A. Kuznetsov and V. P. Ruban, Pis’ma Zh. Éksp. Teor. Fiz. 67, 1015 (1998) [JETP Lett. 67, 1076 (1998)].Google Scholar
  6. 6.
    E. A. Kuznetsov and V. P. Ruban, Phys. Rev. E 61, 831 (2000).ADSMathSciNetGoogle Scholar
  7. 7.
    E. I. Yakubovich and D. A. Zenkovich, in Proceedings of the International Conference “Progress in Nonlinear Science,” Nizhni Novgorod, Russia, 2001, Ed. by A. G. Litvak (Nizhni Novgorod, 2002), p. 282; physics/0110004.Google Scholar
  8. 8.
    V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 137, 1137 (1977).Google Scholar
  9. 9.
    R. Salmon, Annu. Rev. Fluid Mech. 20, 225 (1988).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations