Physics of the Solid State

, Volume 44, Issue 11, pp 2013–2030

Intracenter transitions of iron-group ions in II–VI semiconductor matrices

  • V. F. Agekyan
Reviews

Abstract

A review is made of studies of intracenter optical transitions in 3d shells of iron-group divalent (magnetic) ions. Attention is focused on the emission spectra of Mn2+ ions in CdTe, ZnS, and ZnSe crystals. An analysis is made of the structure of intracenter absorption and luminescence and of the effect that the elemental matrix composition, magnetic-ion concentration, temperature, hydrostatic pressure, and structural phase transitions exert on the intracenter transitions. The mutual influence of two electronic excitation relaxation mechanisms, interband and intracenter, is considered. The specific features of the intracenter emission of magnetic ions embedded in two-dimensional systems and nanocrystals associated with a variation in sp-d exchange interaction and other factors are discussed. Data on the decay kinetics over the intracenter luminescence band profile are presented as a function of temperature, magnetic ion concentration, and excitation conditions. The saturation of the luminescence and the variation of its kinetic properties under strong optical excitation, which are caused by excitation migration and the cooperative effect, as well as the manifestation of a nonlinearity in intracenter absorption, are studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Gumlich, J. Lumin. 23, 73 (1981).Google Scholar
  2. 2.
    K. A. Kikoin, V. I. Sokolov, V. N. Flerov, and V. V. Chernyaev, Zh. Éksp. Teor. Fiz. 83, 2335 (1982) [Sov. Phys. JETP 56, 1354 (1982)].Google Scholar
  3. 3.
    V. I. Sokolov and O. V. Dolzhenkov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 455 (1998) [Semiconductors 32, 406 (1998)].Google Scholar
  4. 4.
    M. Beale, Philos. Mag. 68, 573 (1993).Google Scholar
  5. 5.
    X. Yang and X. Xu, Appl. Phys. Lett. 77, 797 (2000).ADSGoogle Scholar
  6. 6.
    O. Goede and W. Heimbrodt, Phys. Status Solidi B 146, 11 (1988).Google Scholar
  7. 7.
    J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).CrossRefADSGoogle Scholar
  8. 8.
    P. A. Wolff, in Semiconductors and Semimetals, Ed. by J. K. Furdyna and J. Kossut (Academic, London, 1988), Vol. 25.Google Scholar
  9. 9.
    H. J. Swagten, A. Twardowski, P. J. Eggenkamp, and W. J. M. de Jonge, Phys. Rev. B 46, 188 (1992).CrossRefADSGoogle Scholar
  10. 10.
    R. J. Nicholas, M. J. Lawless, H. H. Cheng, et al., Semicond. Sci. Technol. 10, 791 (1995).CrossRefADSGoogle Scholar
  11. 11.
    W. Busse, H.-E. Gumlich, and D. Theiss, J. Lumin. 12/13, 693 (1976).Google Scholar
  12. 12.
    J. N. Murrel, S. F. A. Kettle, and J. M. Tedder, Valence Theory (Wiley, London, 1965; Mir, Moscow, 1968).Google Scholar
  13. 13.
    P. Oelhagen, M. P. Vecchi, J. L. Treeong, and V. L. Moruzzi, Solid State Commun. 44, 1547 (1982).Google Scholar
  14. 14.
    W. Zahorowski and E. Gilberg, Solid State Commun. 52, 921 (1984).CrossRefGoogle Scholar
  15. 15.
    M. Taniguchi, L. Ley, R. L. Johnson, et al., Phys. Rev. B 33, 1206 (1986).CrossRefADSGoogle Scholar
  16. 16.
    A. Balzarotti, M. De Crescenzi, R. Messi, et al., Phys. Rev. B 36, 7428 (1987).ADSGoogle Scholar
  17. 17.
    M. Taniguchi, A. Fujimori, M. Fujisawa, et al., Solid State Commun. 62, 431 (1987).CrossRefGoogle Scholar
  18. 18.
    J. Mašek and B. Velicky, Phys. Status Solidi B 140, 135 (1987).Google Scholar
  19. 19.
    A. Bonanni, K. Hingerl, H. Sitter, and D. Stifner, Phys. Status Solidi B 215, 47 (1999).ADSGoogle Scholar
  20. 20.
    D. Boulanger, R. Parrot, U. W. Pohl, et al., Phys. Status Solidi B 213, 79 (1999).ADSGoogle Scholar
  21. 21.
    J. Dreyhsig, K. Klein, H.-E. Gumlich, and J. W. Allen, Solid State Commun. 85, 19 (1993).CrossRefGoogle Scholar
  22. 22.
    C. Chen, X. Wang, Z. Qin, et al., Solid State Commun. 87, 717 (1993).Google Scholar
  23. 23.
    C.-L. Mak, R. Sooryakumar, M. M. Steiner, and B. T. Jonker, Phys. Rev. B 48, 11743 (1993).Google Scholar
  24. 24.
    M. M. Moriwaki, W. M. Becker, W. Gebhardt, and R. R. Galazka, Solid State Commun. 39, 367 (1981).CrossRefGoogle Scholar
  25. 25.
    J. F. MacKay, W. M. Becker, J. Spalek, and U. Debska, Phys. Rev. B 42, 1743 (1990).CrossRefADSGoogle Scholar
  26. 26.
    J. Watanabe, H. Arai, T. Nouchi, and J. Nakahara, J. Phys. Soc. Jpn. 61, 2227 (1992).Google Scholar
  27. 27.
    H. Schenk, M. Wolf, G. Mackh, et al., J. Appl. Phys. 79, 8704 (1996).ADSGoogle Scholar
  28. 28.
    A. Lira, A. Mendes, L. Dagdug, et al., Phys. Status Solidi B 212, 199 (1999).ADSGoogle Scholar
  29. 29.
    M. M. Moriwaki, W. M. Becker, W. Gebhardt, and R. R. Galazka, Phys. Rev. B 26, 3165 (1982).CrossRefADSGoogle Scholar
  30. 30.
    S. Biernacki, M. Kutrowski, G. Karczewski, et al., Semicond. Sci. Technol. 11, 48 (1996).ADSGoogle Scholar
  31. 31.
    H. Anno, T. Koyanagi, and K. Matsubara, J. Cryst. Growth 117, 816 (1992).CrossRefADSGoogle Scholar
  32. 32.
    S. M. Durbin, J. Han. O. Sungki, and M. Kobayashi, Appl. Phys. Lett. 55, 2087 (1989).CrossRefADSGoogle Scholar
  33. 33.
    T. M. Giebultowicz, P. Klosowski, N. Samarth, et al., Phys. Rev. B 48, 12817 (1993).Google Scholar
  34. 34.
    E. Muller and W. Gerhardt, Phys. Status Solidi B 137, 259 (1986).Google Scholar
  35. 35.
    V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, and N. G. Filosofov, Fiz. Tverd. Tela (St. Petersburg) 42, 816 (2000) [Phys. Solid State 42, 836 (2000)].Google Scholar
  36. 36.
    K. Ichino, H. Misasa, M. Kitagawa, et al., Jpn. J. Appl. Phys. 40, 1289 (2000).Google Scholar
  37. 37.
    T. P. Surkova, P. Kaszor, A. J. Zakrzewski, et al., J. Cryst. Growth 214/215, 576 (1999).Google Scholar
  38. 38.
    W. Paszkowicz, K. Godwod, J. Domagala, et al., Solid State Commun. 107, 735 (1998).CrossRefGoogle Scholar
  39. 39.
    R. Fiederling, M. Keim, G. Reuscher, et al., Nature 402, 787 (1999).ADSGoogle Scholar
  40. 40.
    W. Giriat, Phys. Status Solidi B 136, K129 (1986).Google Scholar
  41. 41.
    V. F. Agekyan and F. Zung, Fiz. Tverd. Tela (Leningrad) 30, 3150 (1988) [Sov. Phys. Solid State 30, 1812 (1988)].Google Scholar
  42. 42.
    A. Anastassiadou, E. Liarokapis, S. Stoyanov, et al., Solid State Commun. 67, 633 (1988).CrossRefGoogle Scholar
  43. 43.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).Google Scholar
  44. 44.
    S. Ves, K. Strossner, W. Gebhardt, and M. Cardona, Phys. Rev. B 33, 4077 (1986).CrossRefADSGoogle Scholar
  45. 45.
    M. Kobayashi, Y. Nakamura, S. Endo, and W. Giriat, Phys. Status Solidi B 211, 359 (1999).ADSGoogle Scholar
  46. 46.
    D. Some and A. V. Nurmikko, Phys. Rev. B 48, 4418 (1993).CrossRefADSGoogle Scholar
  47. 47.
    V. G. Abramishvili, A. V. Komarov, S. M. Ryabchenko, and Yu. G. Semenov, Solid State Commun. 78, 1069 (1991).CrossRefGoogle Scholar
  48. 48.
    V. F. Agekyan and F. Zung, Fiz. Tverd. Tela (Leningrad) 30, 3444 (1988) [Sov. Phys. Solid State 30, 1976 (1988)].Google Scholar
  49. 49.
    D. Leinen, Phys. Rev. B 55, 6975 (1997).CrossRefADSGoogle Scholar
  50. 50.
    T. P. Surkova, S. A. Permogorov, L. N. Tenichev, and V. P. Galakhov, J. Cryst. Growth 184/185, 1128 (1998).CrossRefGoogle Scholar
  51. 51.
    K. Dou, S. H. Huang, J. Q. Yu, et al., Solid State Commun. 76, 1165 (1990).CrossRefGoogle Scholar
  52. 52.
    Y. Terai, Sh. Kuroda, and R. Takita, Appl. Phys. Lett. 76, 2400 (2000).CrossRefADSGoogle Scholar
  53. 53.
    L. Chen, P. L. Klar, W. Heimbrodt, et al., Appl. Phys. Lett. 76, 3531 (2000).ADSGoogle Scholar
  54. 54.
    J. Zhou, Y. Zhou, S. Buddhudu, et al., Appl. Phys. Lett. 76, 3513 (2000).ADSGoogle Scholar
  55. 55.
    R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).CrossRefADSGoogle Scholar
  56. 56.
    R. N. Bhargava, J. Cryst. Growth 214/215, 926 (2000).CrossRefGoogle Scholar
  57. 57.
    D. M. Hoffman, B. K. Meyer, A. I. Ekimov, et al., Solid State Commun. 114, 547 (2000).CrossRefGoogle Scholar
  58. 58.
    A. A. Bol and A. Meijerink, J. Lumin. 87/89, 315 (2000).Google Scholar
  59. 59.
    M. Tanaka, J. Qi, and Y. Matsumoto, J. Cryst. Growth 214/215, 410 (2000).CrossRefGoogle Scholar
  60. 60.
    L. M. Gan, B. Liu, C. H. Chew, et al., Langmuir 13, 6427 (1997).CrossRefGoogle Scholar
  61. 61.
    I. Yu, T. Isobe, and M. Senna, J. Phys. Chem. Solids 57, 373 (1996).Google Scholar
  62. 62.
    S.-M. Liu, F.-Q. Liu, H.-Q. Guo, et al., Solid State Commun. 115, 615 (2000).Google Scholar
  63. 63.
    W. Park, T. C. Jones, S. Schon, et al., J. Cryst. Growth 184/185, 1123 (1998).CrossRefGoogle Scholar
  64. 64.
    C. S. Kim, M. Kim, S. Lee, et al., J. Cryst. Growth 214/215, 395 (2000).Google Scholar
  65. 65.
    H. Falk, P. J. Klar, J. Hubner, et al., in Abstracts of Tenth International Conference on II–VI Compounds, Bremen, 2001, Tu-09.Google Scholar
  66. 66.
    J. Nakamura, K. Takamura, and S. Yamamoto, Phys. Status Solidi B 211, 223 (1999).ADSGoogle Scholar
  67. 67.
    P. Perlin, S. Shilo, T. Sosin, et al., J. Phys. Chem. Solids 56, 415 (1995).Google Scholar
  68. 68.
    J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985).CrossRefADSGoogle Scholar
  69. 69.
    J. M. Langer, C. Delerue, M. Lannoo, and H. Heinrich, Phys. Rev. B 38, 7723 (1988).CrossRefADSGoogle Scholar
  70. 70.
    T. Surkova, W. Giriat, M. Goldlewski, et al., Acta Phys. Pol. 88, 925 (1995).Google Scholar
  71. 71.
    V. F. Agekyan and F. Zung, Fiz. Tverd. Tela (Leningrad) 27, 1216 (1985) [Sov. Phys. Solid State 27, 732 (1985)].Google Scholar
  72. 72.
    J. Gregus, J. Watanabe, and J. Nakahara, J. Phys. Soc. Jpn. 66, 1810 (1997).CrossRefGoogle Scholar
  73. 73.
    E. Muller, W. Gebhardt, and V. Gerhardt, Phys. Status Solidi B 113, 209 (1982).Google Scholar
  74. 74.
    V. F. Agekyan and F. Zung, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 1859 (1984) [Sov. Phys. Semicond. 18, 1160 (1984)].Google Scholar
  75. 75.
    H. Born, P. Thurian, T. Surkova, et al., J. Cryst. Growth 184/185, 1132 (1998).CrossRefGoogle Scholar
  76. 76.
    D. Scalbert, J. Chernogora, and C. Benoit a la Guillaume, Solid State Commun. 66, 571 (1988).CrossRefGoogle Scholar
  77. 77.
    V. F. Agekyan, Yu. V. Rud’, and R. Schwabe, Fiz. Tverd. Tela (Leningrad) 29, 1685 (1987) [Sov. Phys. Solid State 29, 970 (1987)].Google Scholar
  78. 78.
    D. L. Dexter, Chem. Phys. 21, 836 (1953).Google Scholar
  79. 79.
    T. H. Förster, Ann. Phys. 2, 55 (1948).MATHGoogle Scholar
  80. 80.
    L. D. Park, S. Yamamoto, J. Watanabe, et al., J. Phys. Soc. Jpn. 66, 3289 (1997).CrossRefGoogle Scholar
  81. 81.
    M. Katiyar and A. N. Kitai, J. Lumin. 46, 227 (1990).Google Scholar
  82. 82.
    D. L. Huber, D. S. Hamilton, and B. Barnett, Phys. Rev. B 16, 4642 (1977).ADSGoogle Scholar
  83. 83.
    D. L. Huber, Phys. Rev. B 20, 2307 (1979).ADSGoogle Scholar
  84. 84.
    V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Nauka, Moscow, 1978; North-Holland, Amsterdam, 1982).Google Scholar
  85. 85.
    V. F. Agekyan, N. N. Vasil’ev, and A. Yu. Serov, Fiz. Tverd. Tela (St. Petersburg) 41, 49 (1999) [Phys. Solid State 41, 41 (1999)].Google Scholar
  86. 86.
    V. F. Aguekian, N. N. Vasil’ev, A. Yu. Serov, and N. G. Filosofov, J. Cryst. Growth 214/215, 391 (2000).CrossRefGoogle Scholar
  87. 87.
    V. V. Ovsyankin and P. P. Feofilov, Opt. Spektrosk. 37, 262 (1973).Google Scholar
  88. 88.
    S. Yamamoto, K. Takamura, and J. Nakahara, Phys. Status Solidi B 211, 111 (1999).ADSGoogle Scholar
  89. 89.
    V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, and N. G. Filosofov, Fiz. Tverd. Tela (St. Petersburg) 43, 1562 (2001) [Phys. Solid State 43, 1626 (2001)].Google Scholar
  90. 90.
    J. T. Seo, U. Hommerich, S. V. Trivedi, et al., Opt. Commun. 153, 267 (1998).CrossRefADSGoogle Scholar
  91. 91.
    L. D. DeLoach, R. H. Page, G. D. Wilke, et al., IEEE J. Quantum Electron. 32, 885 (1996).CrossRefADSGoogle Scholar
  92. 92.
    R. H. Page, K. I. Schlaffers, L. D. DeLoach, et al., IEEE J. Quantum Electron. 33, 609 (1997).CrossRefGoogle Scholar
  93. 93.
    U. Hommerich, X. Wu, V. R. Davis, et al., Opt. Lett. 22, 1180 (1997).ADSGoogle Scholar
  94. 94.
    A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kiselev, et al., Opt. Commun. 167, 129 (1999).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • V. F. Agekyan
    • 1
  1. 1.Institute of PhysicsSt. Petersburg State UniversitySt. Petersburg, PetrodvoretsRussia

Personalised recommendations