Journal of Experimental and Theoretical Physics

, Volume 95, Issue 4, pp 714–727 | Cite as

Disclination motion in liquid crystalline films

  • E. I. Kats
  • V. V. Lebedev
  • S. V. Malinin


We theoretically study a single disclination motion in a thin free-standing liquid crystalline film. Backflow effects and the own dynamics of the orientational degree of freedom (bond or director angle) are taken into account. We find the orientation field and the hydrodynamic velocity distribution around the moving disclination, which allows us to relate the disclination velocity to the angle gradient far from the disclination. Different cases are examined depending on the ratio of the rotational and shear viscosity coefficients.


Spectroscopy Viscosity State Physics Field Theory Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1995).Google Scholar
  2. 2.
    S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1992).Google Scholar
  3. 3.
    P. Oswald and P. Pieranski, Les cristaux liquides (Gordon and Breach, Paris, 2000), Vol. 1.Google Scholar
  4. 4.
    E. B. Sonin, Phys. Rev. B 55, 485 (1997).CrossRefADSGoogle Scholar
  5. 5.
    H. Pleiner, Phys. Rev. A 37, 3986 (1988).CrossRefADSGoogle Scholar
  6. 6.
    E. Bodenschatz, W. Pesch, and L. Kramer, Physica D (Amsterdam) 32, 135 (1988).ADSGoogle Scholar
  7. 7.
    L. M. Pismen and J. D. Rodriguez, Phys. Rev.A 42, 2471 (1990).CrossRefADSGoogle Scholar
  8. 8.
    G. Ryskin and M. Kremenetsky, Phys. Rev. Lett. 67, 1574 (1991).CrossRefADSGoogle Scholar
  9. 9.
    C. Denniston, Phys. Rev. B 54, 6272 (1996).CrossRefADSGoogle Scholar
  10. 10.
    R. Pindak, C. Y. Young, R. B. Meyer, and N. A. Clark, Phys. Rev. Lett. 45, 1193 (1980).CrossRefADSGoogle Scholar
  11. 11.
    R. Loft and T. A. DeGrand, Phys. Rev. B 35, 8528 (1987).CrossRefADSGoogle Scholar
  12. 12.
    P. E. Cladis, W. van Saarloos, P. L. Finn, and A. R. Kortan, Phys. Rev. Lett. 58, 222 (1987).CrossRefADSGoogle Scholar
  13. 13.
    A. Pargellis, N. Turok, and B. Yurke, Phys. Rev. Lett. 67, 1570 (1991).CrossRefADSGoogle Scholar
  14. 14.
    B. Yurke, A. N. Pargellis, T. Kovacs, and D. A. Huse, Phys. Rev. E 47, 1525 (1993).CrossRefADSGoogle Scholar
  15. 15.
    J.-I. Fukuda, Eur. Phys. J. B 1, 173 (1998).CrossRefADSGoogle Scholar
  16. 16.
    C. Denniston, E. Orlandini, and J. M. Yeomans, Europhys. Lett. 52, 481 (2000).CrossRefADSGoogle Scholar
  17. 17.
    C. Denniston, E. Orlandini, and J. M. Yeomans, Phys. Rev. E 64, 021701 (2001).Google Scholar
  18. 18.
    G. Tóth, C. Denniston, and J. M. Yeomans, Phys. Rev. Lett. 88, 105504 (2002).Google Scholar
  19. 19.
    V. L. Berezinskii, Zh. Éksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1970)].Google Scholar
  20. 20.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).CrossRefADSGoogle Scholar
  21. 21.
    G. Blatter, M. V. Feigelman, V. B. Geshkenbein, et al., Rev. Mod. Phys. 66, 1125 (1994).CrossRefADSGoogle Scholar
  22. 22.
    H. E. Hall and W. F. Vinen, Proc. R. Soc. London, Ser. A 238, 204 (1956).ADSGoogle Scholar
  23. 23.
    E. B. Sonin, Rev. Mod. Phys. 59, 87 (1987).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    A. Zippelius, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 22, 2514 (1980).CrossRefADSGoogle Scholar
  25. 25.
    D. H. van Winkle and N. A. Clark, Bull. Am. Phys. Soc. 30, 379 (1985).Google Scholar
  26. 26.
    S. B. Dierker, R. Pindak, and R. B. Meyer, Phys. Rev. Lett. 56, 1819 (1986).CrossRefADSGoogle Scholar
  27. 27.
    C. D. Muzny and N. A. Clark, Phys. Rev. Lett. 68, 804 (1992).CrossRefADSGoogle Scholar
  28. 28.
    E. V. Gurovich, E. I. Kats, and V. V. Lebedev, Zh. Éksp. Teor. Fiz. 100, 855 (1991) [Sov. Phys. JETP 73, 473 (1991)].Google Scholar
  29. 29.
    D. R. Nelson and R. A. Pelcovits, Phys. Rev. B 16, 2191 (1977).ADSGoogle Scholar
  30. 30.
    E. I. Kats and V. V. Lebedev, Fluctuational Effects in the Dynamics of Liquid Crystals (Springer-Verlag, New York, 1993).Google Scholar
  31. 31.
    L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1996).Google Scholar
  32. 32.
    R. D. Kamien and J. V. Selinger, J. Phys.: Condens. Matter 13, R1 (2001).CrossRefADSGoogle Scholar
  33. 33.
    G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 1970; Mir, Moscow, 1973).Google Scholar
  34. 34.
    H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1975).Google Scholar
  35. 35.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  36. 36.
    E. J. Acosta, M. J. Towler, and H. G. Walton, Liq. Cryst. 27, 977 (2000).Google Scholar
  37. 37.
    I. E. Dzyaloshinskii and G. E. Volovik, Ann. Phys. 125, 67 (1980).MathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • E. I. Kats
    • 1
    • 2
  • V. V. Lebedev
    • 1
    • 3
  • S. V. Malinin
    • 1
    • 4
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Laue-Langevin InstituteGrenobleFrance
  3. 3.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Forschungszentrum JülichJülichGermany

Personalised recommendations