Advertisement

Journal of Experimental and Theoretical Physics

, Volume 95, Issue 4, pp 645–661 | Cite as

Semiclassical approach to states near the potential barrier top

  • V. A. Benderskii
  • E. V. Vetoshkin
  • E. I. Kats
Atoms, Spectra, Radiation

Abstract

Within the framework of the instanton approach, we present analytical results for the following model problems: (i) particle penetration through a parabolic potential barrier, where the instanton solution practically coincides with the exact (quantum) one; (ii) descriptions of highly excited states in anharmonic potentials of two types: double-well X4 and decay X3. For the former potential, the instanton method accurately reproduces not only single-well and double-well quantization, but also a crossover region (in contrast to the standard WKB approach that fails to describe the crossover behavior); for the latter potential, the instanton method allows studying the resonance broadening and collapse phenomena. We also investigate resonance tunneling that plays a relevant role in many semiconducting devices. We show that the instanton approach gives exact (quantum) results in a broad range of energies. Applications of the method and of the results are applicable to various systems in physics, chemistry, and biology exhibiting double-level behavior and resonance tunneling.

Keywords

Excited State Potential Barrier Model Problem Relevant Role Crossover Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, New York, 1977).Google Scholar
  2. 2.
    J. Heading, An Introduction to Phase-Integral Methods (Wiley-Interscience, London, 1962).Google Scholar
  3. 3.
    V. L. Pokrovskii and I. M. Khalatnikov, Zh. Éksp. Teor. Fiz. 40, 1713 (1961) [Sov. Phys. JETP 13, 1207 (1961)].Google Scholar
  4. 4.
    N. T. Maintra and E. J. Heller, Phys. Rev. A 54, 4763 (1996).ADSGoogle Scholar
  5. 5.
    C. S. Park and M. C. Jeong, Phys. Rev. A 58, 3443 (1998).CrossRefADSGoogle Scholar
  6. 6.
    A. K. Roy, N. Gupta, and D. M. Deb, Phys. Rev. A 65, 012109 (2002).Google Scholar
  7. 7.
    A. M. Polyakov, Nucl. Phys. B 129, 429 (1977).ADSMathSciNetGoogle Scholar
  8. 8.
    S. Coleman, Aspects of Symmetry (Cambridge Univ. Press, Cambridge, 1985).Google Scholar
  9. 9.
    V. A. Benderskii, D. E. Makarov, and C. A. Wight, Chemical Dynamics at Low Temperatures (Wiley-Interscience, New York, 1994).Google Scholar
  10. 10.
    V. A. Benderskii, E. V. Vetoshkin, and H. P. Trommsdorf, Chem. Phys. 244, 273 (1999).Google Scholar
  11. 11.
    V. A. Benderskii and E. V. Vetoshkin, Chem. Phys. 257, 203 (2000).CrossRefGoogle Scholar
  12. 12.
    V. A. Benderskii, E. V. Vetoshkin, L. S. Irgebaeva, and H. P. Trommsdorff, Chem. Phys. 262, 369 (2000).Google Scholar
  13. 13.
    I. M. Lifshitz and Yu. Kagan, Zh. Éksp. Teor. Fiz. 62, 385 (1972) [Sov. Phys. JETP 35, 206 (1972)].Google Scholar
  14. 14.
    M. Grifoni and P. Hanggi, Phys. Rep. 304, 229 (1998).CrossRefMathSciNetGoogle Scholar
  15. 15.
    J. E. Avron and E. Gordon, Phys. Rev. A 62, 062504 (2000).Google Scholar
  16. 16.
    J. Ankerhold and H. Grabert, Europhys. Lett. 47, 285 (1999).CrossRefADSGoogle Scholar
  17. 17.
    Y. Kayanuma and Y. Mizumoto, Phys. Rev. A 62, 061401 (2000).Google Scholar
  18. 18.
    V. A. Benderskii and E. I. Kats, Phys. Rev. E 65, 036217 (2002).Google Scholar
  19. 19.
    V. V. Avilov and S. V. Iordanskii, Zh. Éksp. Teor. Fiz. 69, 1338 (1975) [Sov. Phys. JETP 42, 683 (1975)].Google Scholar
  20. 20.
    V. A. Benderskii, E. V. Vetoshkin, L. von Laue, and H. P. Trommsdorff, Chem. Phys. 219, 143 (1997).Google Scholar
  21. 21.
    A. M. Dykhne, Zh. Éksp. Teor. Fiz. 41, 1324 (1961) [Sov. Phys. JETP 14, 941 (1961)].Google Scholar
  22. 22.
    Heigher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953, 1953, 1955; Nauka, Moscow, 1965, 1966, 1967), Vols. 1–3.Google Scholar
  23. 23.
    M. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).ADSMathSciNetGoogle Scholar
  24. 24.
    M. Wilkinson, J. Phys. A 17, 3459 (1984).CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    H. Karatsuji, Prog. Theor. Phys. 74, 439 (1985).ADSGoogle Scholar
  26. 26.
    A. O. Caldeira and A. J. Legget, Ann. Phys. 149, 374 (1983).Google Scholar
  27. 27.
    D. Bohm, Quantum Theory (Prentice-Hall, Englewood Clifs, 1951; Nauka, Moscow, 1965).Google Scholar
  28. 28.
    L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).Google Scholar
  29. 29.
    J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 74, 1419 (1995).ADSGoogle Scholar
  30. 30.
    Sh. Matsumoto and M. Yoshimura, Phys. Rev. A 63, 012104 (2000).Google Scholar
  31. 31.
    M. Baer, Phys. Rep. 358, 75 (2002).CrossRefADSMATHMathSciNetGoogle Scholar
  32. 32.
    H. Pu, W. Zhang, and P. Meystre, Phys. Rev. Lett. 87, 140405 (2001).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • V. A. Benderskii
    • 1
    • 2
  • E. V. Vetoshkin
    • 1
  • E. I. Kats
    • 3
    • 4
  1. 1.Institute for Problems of Chemical PhysicsRussian Academy of SciencesMoscow oblast, ChernogolovkaRussia
  2. 2.Lab. Spectrometrie PhysiqueSt. Martin d’Heres, CedexFrance
  3. 3.Institute Laue-LangevinGrenobleFrance
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscow oblast, ChernogolovkaRussia

Personalised recommendations