Doklady Physics

, Volume 47, Issue 10, pp 767–771 | Cite as

Solution to the Herrmann-Smith problem

  • O. N. Kirillov
  • A. P. Seyranian
Mechanics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Yu. Dzhanelidze, Tr. Leningr. Politekh. Inst., No. 192, 21 (1958).Google Scholar
  2. 2.
    Z. Kordas and M. Życzkowski, Arch. Mech. Stosow. 15(1), 7 (1963).Google Scholar
  3. 3.
    T. E. Smith and G. Herrmann, Trans. ASME. J. Appl. Mech. 39(2), 628 (1972).Google Scholar
  4. 4.
    C. Sundararajan, J. Sound and Vibr. 37(1), 79 (1974).MATHGoogle Scholar
  5. 5.
    W. Hauger and K. Vetter, J. Sound and Vibr. 47(2), 296 (1976).ADSGoogle Scholar
  6. 6.
    I. I. Voloshin and V. G. Gromov, Izv. Akad. Nauk, Mekh. Tverd. Tela 12(4), 169 (1977).Google Scholar
  7. 7.
    Ya. G. Panovko and I. I. Gubanova, Stability and Oscillations of Elastic Systems: Advanced Concepts, Paradoxes, and Errors (Nauka, Moscow, 1987).Google Scholar
  8. 8.
    S. Y. Lee, J. C. Lin, and K. C. Hsu, Comput. Struct. 59, 983 (1996).Google Scholar
  9. 9.
    I. Elishakoff and N. Impollonia, Trans. ASME, J. Appl. Mech. 68(2), 206 (2001).Google Scholar
  10. 10.
    O. N. Kirillov and A. P. Seyranian, in Proceedings of Seminar on Time, Chaos, and Mathematical Problems, Mosk. Gos. Univ., No. 2, 217 (2000).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • O. N. Kirillov
    • 1
  • A. P. Seyranian
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations