Optics and Spectroscopy

, Volume 93, Issue 4, pp 588–597

Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers

  • K. N. Alekseev
  • A. V. Volyar
  • T. A. Fadeeva
Physical and Quantum Optics


The transformation of the angular momentum of an optical eddy in a weakly directing perturbed optical fiber is analyzed within the spin-orbit operator representation. The case of fibers with anisotropy of the core and cladding materials and the case of fibers with an elliptic cross section are considered. The spectrum of polarization corrections to the scalar propagation constant is determined for fibers of two types. For both the strongly anisotropic and elliptic fibers, the spin angular momentum of the linearly polarized LV eddy is suppressed and the orbital angular momentum is characterized by simple oscillations with a beating length dependent only on the spin-orbit parameter of an unperturbed fiber. The orbital and spin angular momenta of the circularly polarized CV eddy in the anisotropic fiber interchange in the elliptic fiber. The orbital angular momentum can be completely restored in the strongly anisotropic fiber, whereas only the spin angular momentum is completely restored in the elliptic fiber.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Nye and M. V. Berry, Proc. R. Soc. London, Ser. A 336, 165 (1974).MATHADSMathSciNetGoogle Scholar
  2. 2.
    M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).Google Scholar
  3. 3.
    J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics Publishing, Bristol, 1999).MATHGoogle Scholar
  4. 4.
    B. Ya. Zel’dovich, N. F. Pilipetskii, and V. V. Shkunov, Wave Front Reversal (Nauka, Moscow, 1985).Google Scholar
  5. 5.
    K. N. Alexeyev, T. A. Fadeyeva, A. V. Volyar, and M. S. Soskin, Semicond. Phys. Quantum Electron. Optoelectron. 1, 1 (1998).Google Scholar
  6. 6.
    C. N. Alexeyev, M. S. Soskin, and A. V. Volyar, Semicond. Phys. Quantum Electron. Optoelectron. 3, 501 (2000).Google Scholar
  7. 7.
    Yu. Egorov, A. N. Alexeyev, O. A. Shipulin, et al., Proc. SPIE 4607, 66 (2001).CrossRefADSGoogle Scholar
  8. 8.
    N. Shibata, K. Okamoto, K. Suzuki, and Yu. Ishida, J. Opt. Soc. Am. 73, 1792 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).Google Scholar
  10. 10.
    C. B. Verma, U. K. Singh, and O. N. Singh, Optik (Stuttgart) 112, 105 (2001).ADSGoogle Scholar
  11. 11.
    A. S. Davydov, Quantum Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).Google Scholar
  12. 12.
    A. V. Volyar and T. A. Fadeeva, Opt. Spektrosk. 85, 295 (1998) [Opt. Spectrosc. 85, 272 (1998)].Google Scholar
  13. 13.
    A. V. Volyar, V. Z. Zhilaitis, and V. G. Shvedov, Opt. Spektrosk. 86, 664 (1999) [Opt. Spectrosc. 86, 593 (1999)].Google Scholar
  14. 14.
    L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).MathSciNetCrossRefGoogle Scholar
  15. 15.
    L. A. Lyubimov, G. I. Veselov, and N. A. Bei, Radiotekh. Élektron. (Moscow) 6, 1872 (1961).Google Scholar
  16. 16.
    T. Martiynkien, S. Haris, and W. Urbanczyk, Optik (Stuttgart) 111, 454 (2000).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • K. N. Alekseev
    • 1
  • A. V. Volyar
    • 1
  • T. A. Fadeeva
    • 1
  1. 1.Vernadsky State UniversitySimferopolUkraine

Personalised recommendations