Physics of the Solid State

, Volume 44, Issue 10, pp 2001–2008 | Cite as

Small-angle x-ray scattering in a carbon-sulfur nanocomposite produced from bulk nanoporous carbon

  • É. A. Smorgonskaya
  • R. N. Kyutt
  • V. B. Shuman
  • A. M. Danishevskii
  • S. K. Gordeev
  • A. V. Grechinskaya
Fullerenes and Atomic Clusters

Abstract

A new nanocomposite material containing approximately 50 vol % S is prepared by filling pores of bulk nanoporous carbon samples with sulfur. The initial nanoporous carbon samples are synthesized from polycrystalline α-SiC through the chemical reaction. A comparative investigation of small-angle x-ray scattering (SAXS) is performed for the prepared nanocomposite and the initial material. The possible changes in the scattering power of the initial material upon filling of its pores with sulfur are considered in the framework of a simple model. The regularities revealed are used to interpret the experimentally observed changes in the scattering power. The size distribution functions of incorporated sulfur nanoclusters in the nanocomposite (or filled nanopores in the initial material) are determined within the Guinier approximation. It is demonstrated that the smallest sized pores (8–16 Å) remain unfilled, whereas the filling factor for larger sized pores can reach several ten percent by volume. The conditions favorable for small-angle x-ray scattering upon filling of the nanopores are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Gordeev and A. V. Vartanova, Zh. Prikl. Khim. 66(7), 1080 (1994); 66 (9), 1375 (1994).Google Scholar
  2. 2.
    S. K. Gordeev, A. V. Vartanova, S. G. Zhukov, et al., RF Patent No. 2026735, Byull. Izobret., No. 2 (1995).Google Scholar
  3. 3.
    S. K. Gordeev, R. G. Avarbz, A. E. Kravtjik, et al., Int. Patent Publ. under PCT. Int. Classification CO4B 30/00, 35/52. Publ. Number WO98/54111 (1998).Google Scholar
  4. 4.
    R. G. Avarbz, A. V. Vartanova, S. K. Gordeev, et al., US Patent No. 5876787 (1999).Google Scholar
  5. 5.
    Science and Technology of Carbon Nanotubes, Ed. by K. Tanaka, T. Yamabe, and K. Fukui (Elsevier, Amsterdam, 1999).Google Scholar
  6. 6.
    R. N. Kyutt, É. A. Smorgonskaya, S. K. Gordeev, et al., Fiz. Tverd. Tela (St. Petersburg) 41(5), 891 (1999) [Phys. Solid State 41, 808 (1999)]; Fiz. Tverd. Tela (St. Petersburg) 41 (8), 1484 (1999) [Phys. Solid State 41, 1359 (1999)].Google Scholar
  7. 7.
    G. M. Plavnik, T. P. Puryaeva, and M. M. Dubinin, Izv. Akad. Nauk, Ser. Khim., No. 7, 628 (1993).Google Scholar
  8. 8.
    G. M. Plavnik and T. P. Puryaeva, in Proceedings of the I National Conference on Application of X-ray and Synchrotron Radiation, Neutrons, and Electrons to Research in Materials (RSNÉ’97), Dubna, 1997, Vol. II, p. 149.Google Scholar
  9. 9.
    S. Gupta, B. R. Weiner, B. L. Weiss, and G. Morell, in Abstracts of International Conference of the Materials Research Society, 2001, San-Francisco, 2001, W6-9, p. 388.Google Scholar
  10. 10.
    É. A. Smorgonskaya, R. N. Kyutt, S. K. Gordeev, et al., Fiz. Tverd. Tela (St. Petersburg) 42(6), 132 (2000) [Phys. Solid State 42, 1176 (2000)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • É. A. Smorgonskaya
    • 1
  • R. N. Kyutt
    • 1
  • V. B. Shuman
    • 1
  • A. M. Danishevskii
    • 1
  • S. K. Gordeev
    • 2
  • A. V. Grechinskaya
    • 2
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Central Research Institute of MaterialsSt. PetersburgRussia

Personalised recommendations