Journal of Experimental and Theoretical Physics

, Volume 95, Issue 3, pp 538–549 | Cite as

One-dimensional anisotropic Heisenberg model in the transverse magnetic field

  • D. V. Dmitriev
  • V. Ya. Krivnov
  • A. A. Ovchinnikov
  • A. Langari
Solids Electronic Properties


The one-dimensional spin-1/2 XXZ model in a transverse magnetic field is studied. It is shown that the field induces a gap in the spectrum of the model with the easy-plane anisotropy. Using conformal invariance, the field dependence of the gap is found at small fields. The ground state phase diagram is obtained. It contains four phases with the long-range order of different types and a disordered phase. These phases are separated by critical lines, where the gap and the long-range order vanish. Using scaling estimates, the mean-field approach, and numerical calculations in the vicinity of all critical lines, we find the critical exponents of the gap and the long-range order. It is shown that the transition line between the ordered and disordered phases belongs to the universality class of the transverse Ising model.


Anisotropy Ising Model Critical Exponent Field Dependence Conformal Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Helfrich, M. Koppen, M. Lang, et al., J. Magn. Magn. Mater. 177, 309 (1998).CrossRefADSGoogle Scholar
  2. 2.
    C. N. Yang and C. P. Yang, Phys. Rev. B 150, 321 (1966); Phys. Rev. B 150, 327 (1966).ADSGoogle Scholar
  3. 3.
    G. Uimin, Y. Kudasov, P. Fulde, and A. A. Ovchinnikov, Eur. Phys. J. B 16, 241 (2000).CrossRefADSGoogle Scholar
  4. 4.
    S. Mori, J.-J. Kim, and I. Harada, J. Phys. Soc. Jpn. 64, 3409 (1995); Y. Hieida, K. Okunishi, and Y. Akutsu, Phys. Rev. B 64, 224 422 (2001).Google Scholar
  5. 5.
    J. Kurmann, H. Tomas, and G. Muller, Physica A (Amsterdam) 112, 235 (1982); G. Muller and R. E. Shrock, Phys. Rev. B 32, 5845 (1985).ADSGoogle Scholar
  6. 6.
    F. C. Alcaraz and A. L. Malvezzi, J. Phys. A 28, 1521 (1995); M. Tsukano and K. Nomura, J. Phys. Soc. Jpn. 67, 302 (1998).ADSMathSciNetGoogle Scholar
  7. 7.
    E. Barouch and B. M. McCoy, Phys. Rev. A 3, 786 (1971).ADSGoogle Scholar
  8. 8.
    S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B 493, 571 (1997); T. Hikihara and A. Furusaki, Phys. Rev. B 58, R583 (1998).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge Univ. Press, Cambridge, 1998).Google Scholar
  10. 10.
    A. A. Nersesyan, A. Luther, and F. V. Kusmartsev, Phys. Lett. A 176, 363 (1993).CrossRefADSGoogle Scholar
  11. 11.
    A. Luther and I. Peschel, Phys. Rev. B 12, 3908 (1975).CrossRefADSGoogle Scholar
  12. 12.
    I. Affleck and M. Oshikawa, Phys. Rev. B 60, 1038 (1999).CrossRefADSGoogle Scholar
  13. 13.
    N. M. Bogoliubov, A. G. Izergin, and V. E. Korepin, Nucl. Phys. B 275, 687 (1986).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. D. Johnson, S. Krinsky, and B. M. McCoy, Phys. Rev. A 8, 2526 (1973); I. M. Babich and A. M. Kosevich, Zh. Éksp. Teor. Fiz. 82, 1277 (1982) [Sov. Phys. JETP 55, 743 (1982)].CrossRefADSGoogle Scholar
  15. 15.
    J. L. Cardy, in Phase Transitions and Critical Phenomena (Academic, New York, 1986), Vol. XI.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • D. V. Dmitriev
    • 1
    • 2
  • V. Ya. Krivnov
    • 1
    • 2
  • A. A. Ovchinnikov
    • 1
    • 2
  • A. Langari
    • 2
    • 3
  1. 1.Joint Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Max-Planck-Institut für Physik Komplexer SystemeDresdenGermany
  3. 3.Institute for Advanced Studies in Basic SciencesZanjanIran

Personalised recommendations