Technical Physics

, Volume 47, Issue 8, pp 1008–1013

Optical diode based on a highly anisotropic layer of a helical periodic medium subjected to a magnetic field

  • A. H. Gevorgyan
Optics, Quantum Electronics

Abstract

The effect of an applied magnetic field on the optical properties of a layer of a helical periodic medium is studied in view of magnetooptic activity. The case when the radiation is normally incident on the layer and the magnetic field is aligned with the axis of the medium is considered. Irreversibility (nonreciprocity) effects in such a system are discussed. The situations with weak and high anisotropy are investigated. It is shown that the system can function as an optical shutter, optical diode, or one-side reflector. Reasons for the high irreversibility of transmission (reflection) are found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).Google Scholar
  2. 2.
    L. M. Blinov, Electro-and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1978).Google Scholar
  3. 3.
    A. P. Kapustin, Electrical and Acoustical Properties of Liquid Crystals (Nauka, Moscow, 1973).Google Scholar
  4. 4.
    V. A. Belyakov, Diffraction Optics of Periodic Media of Complex Structure (Nauka, Moscow, 1988).Google Scholar
  5. 5.
    S. Chandrasekhar, Liquid Crystals, Ed. by A. A. Vedenov and I. G. Chistyakov (Cambridge Univ. Press, Cambridge, 1977; Mir, Moscow, 1980).Google Scholar
  6. 6.
    O. S. Eritsyan, Izv. Akad. Nauk Arm. SSR, Fiz. 13, 347 (1978).Google Scholar
  7. 7.
    A. H. Gevorgyan, Uch. Zap. Erevan. Gos. Univ., No. 2, 66 (1987).Google Scholar
  8. 8.
    V. A. Kienya and I. V. Semchenko, Kristallografiya 39, 514 (1994) [Crystallogr. Rep. 39, 457 (1994)].Google Scholar
  9. 9.
    G. A. Vardanyan, A. H. Gevorgyan, O. S. Eritsyan, et al., Kristallografiya 43, 793 (1998) [Crystallogr. Rep. 43, 740 (1998)].Google Scholar
  10. 10.
    O. M. Arakelyan, A. H. Gevorgyan, and O. S. Eritsyan, Izv. Akad. Nauk Arm., Fiz. 35(5), 255 (2000).Google Scholar
  11. 11.
    L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, 1973; Mir, Moscow, 1978).Google Scholar
  12. 12.
    G. Gerritsen and R. Yamaguchi, Usp. Fiz. Nauk 107, 705 (1972).Google Scholar
  13. 13.
    P. D. Sunal, A. Lakhtakia, and R. Messier, Opt. Commun. 158, 119 (1998).CrossRefADSGoogle Scholar
  14. 14.
    P. I. Rovira, R. A. Yarussi, R. W. Collins, et al., Appl. Phys. Lett. 71, 1180 (1997).CrossRefADSGoogle Scholar
  15. 15.
    I. Hodgkinson, Q. H. Wu, B. Knight, et al., Appl. Opt. 39, 642 (2000).ADSGoogle Scholar
  16. 16.
    V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons (Nauka, Moscow, 1979; Springer-Verlag, New York, 1984).Google Scholar
  17. 17.
    F. I. Fedorov, Theory of Gyrotropy (Nauka i Tekhnika, Minsk, 1976).Google Scholar
  18. 18.
    A. K. Zvezdin and V. A. Kotov, Magnetooptics of Thin Films (Nauka, Moscow, 1988).Google Scholar
  19. 19.
    G. S. Krinchik, Physics of Magnetic Phenomena (Mosk. Gos. Univ., Moscow, 1976).Google Scholar
  20. 20.
    V. V. Eremenko, N. F. Kharchenko, Yu. G. Litvinenko, and V. M. Naumenko, Magnetooptics and Spectroscopy of Antiferromagnets (Naukova Dumka, Kiev, 1989).Google Scholar
  21. 21.
    O. G. Vlokh, Spatial Dispersion Phenomena in Parametric Crystal Optics (Vishcha Shkola, L’vov, 1984).Google Scholar
  22. 22.
    V. G. Kamenskii and E. I. Kats, Opt. Spektrosk. 45, 1106 (1978) [Opt. Spectrosc. 45, 877 (1978)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • A. H. Gevorgyan
    • 1
  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations