Two-dimensional electron liquid with disorder in a weak magnetic field

  • I. S. Burmistrov
Solids Electronic Properties


We present the effective theory for the low-energy dynamics of two-dimensional interacting electrons in the presence of a weak short-range disorder and a weak perpendicular magnetic field, with the filling factor γ ≫ 1. We investigate the exchange enhancement of the g factor, the effective mass, and the decay rate of the simplest spin wave excitations at γ=2N+1. We obtain the enhancement of the field-induced gap in the tunneling density of states and the dependence of the tunneling conductivity on the applied bias.


Filling Factor Spin Wave Interact Electron Wave Excitation Effective Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin (Springer-Verlag, Berlin, 1987).Google Scholar
  2. 2.
    A. H. MacDonald and S. M. Girvin, Phys. Rev. B 33, 4009 (1986); R. Morf and N. d’Ambrumenil, E-print archives cond-mat/9409008; L. Belkhir and J. Jain, E-print archives cond-mat/9409020.ADSGoogle Scholar
  3. 3.
    A. P. Smith, A. H. MacDonald, and G. Gumbs, Phys. Rev. B 45, 8829 (1992).ADSGoogle Scholar
  4. 4.
    J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 69, 3804 (1992).CrossRefADSGoogle Scholar
  5. 5.
    R. C. Ashoori, J. A. Lebens, N. P. Bigelow, et al., Phys. Rev. Lett. 64, 681 (1990); Phys. Rev. B 48, 4616 (1993).CrossRefADSGoogle Scholar
  6. 6.
    I. L. Aleiner, H. U. Baranger, and L. I. Glazman, Phys. Rev. Lett. 74, 3435 (1995).CrossRefADSGoogle Scholar
  7. 7.
    I. L. Aleiner and L. I. Glazman, E-print archives condmat/9505026.Google Scholar
  8. 8.
    A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996); Phys. Rev. B 54, 1853 (1996); R. Moessner and J. T. Chalker, Phys. Rev. B 54, 5006 (1996).CrossRefADSGoogle Scholar
  9. 9.
    M. P. Lilly, K. B. Cooper, J. P. Eisenstein, et al., Phys. Rev. Lett. 82, 394 (1999).CrossRefADSGoogle Scholar
  10. 10.
    M. M. Fogler, E-print archives cond-mat/0111001.Google Scholar
  11. 11.
    K. B. Efetov, A. I. Larkin, and D. E. Khmel’nitzkii, Zh. Éksp. Teor. Fiz. 79, 1120 (1980) [Sov. Phys. JETP 52, 568 (1980)].Google Scholar
  12. 12.
    A. M. Finkel’stein, Pis’ma Zh. Éksp. Teor. Fiz. 37, 436 (1983); Zh. Éksp. Teor. Fiz. 84, 168 (1983); Zh. Éksp. Teor. Fiz. 86, 367 (1984).Google Scholar
  13. 13.
    A. M. M. Pruisken, Nucl. Phys. B 235, 277 (1984).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A. M. M. Pruisken, M. A. Baranov, and B. Škorić, Phys. Rev. B 60, 16807 (1999).Google Scholar
  15. 15.
    T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959 (1974); 36, 1521 (1974); T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974).Google Scholar
  16. 16.
    M. A. Baranov and A. M. M. Pruisken, private communication.Google Scholar
  17. 17.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).CrossRefADSGoogle Scholar
  18. 18.
    I. V. Kukushkin, S. V. Meshkov, and V. B. Timofeev, Usp. Fiz. Nauk 155, 219 (1988) [Sov. Phys. Usp. 31, 511 (1988)].Google Scholar
  19. 19.
    X. G. Wu and S. L. Sondhi, E-print archives cond-mat/9502111.Google Scholar
  20. 20.
    T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 37, 1044 (1974).Google Scholar
  21. 21.
    C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).CrossRefADSGoogle Scholar
  22. 22.
    K. Suzuki and Y. Kawamoto, J. Phys. Soc. Jpn. 35, 1456 (1973).Google Scholar
  23. 23.
    Yu. A. Bychkov, S. V. Iordanskii, and G. M. Eliashberg, Pis’ma Zh. Éksp. Teor. Fiz. 33, 152 (1981) [JETP Lett. 33, 143 (1981)].Google Scholar
  24. 24.
    L. S. Levitov and A. V. Shytov, E-print archives cond-mat/9607136 and references therein.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • I. S. Burmistrov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations