Advertisement

Astronomy Letters

, Volume 28, Issue 7, pp 454–464 | Cite as

Kinematic parameters of young subsystems and the galactic rotation curve

  • M. V. Zabolotskikh
  • A. S. Rastorguev
  • A. K. Dambis
Article

Abstract

We analyze the space velocities of blue supergiants, long-period Cepheids, and young open star clusters (OSCs), as well as the H I and H II radial-velocity fields by the maximum-likelihood method. The distance scales of the objects are matched both by comparing the first derivatives of the angular velocity Ω′ determined separately from radial velocities and proper motions and by the statistical-parallax method. The former method yields a short distance scale (for R0=7.5 kpc, the assumed distances should be increased by 4%), whereas the latter method yields a long distance scale (for R0=8.5 kpc, the assumed distances should be increased by 16%). We cannot choose between these two methods. Similarly, the distance scale of blue supergiants should be shortened by 9% and lengthened by 3%, respectively. The H II distance scale is matched with the distance scale of Cepheids and OSCs by comparing the derivatives Ω′ determined for H II from radial velocities and for Cepheids and OSCs from space velocities. As a result, the distances to H II regions should be increased by 5% in the short distance scale. We constructed the Galactic rotation curve in the Galactocentric distance range 2–14 kpc from the radial velocities of all objects with allowance for the difference between the residual-velocity distributions. The axial ratio of the Cepheid+OSC velocity ellipsoid is well described by the Lindblad relation, while σu≈σv for gas. The following rotation-curve parameters were obtained: Ω0=(27.5±1.4) km s−1 kpc−1 and A=(17.1±0.5) km s−1 kpc−1 for the short distance scale (R0=7.5 kpc); and Ω0=(26.6±1.4) km s−1 kpc−1 and A=(15.4±0.5) km s−1 kpc−1 for the long distance scale (R0=8.5 kpc). We propose a new method for determining the angular velocity Ω0 from stellar radial velocities alone by using the Lindblad relation. Good agreement between the inferred Ω0 and our calculations based on space velocities suggests that the Lindblad relation holds throughout the entire sample volume. Our analysis of the heliocentric velocities for samples of young objects reveals noticeable streaming motions (with a velocity lag of ∼7 km s−1 relative to the LSR), whereas a direct computation of the perturbation amplitudes in terms of the linear density-wave theory yields a small amplitude for the tangential perturbations.

Key words

Galactic kinematics rotation curve distance scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Barbier-Brossat and P. Figon, Astron. Astrophys., Suppl. Ser. 142, 217 (2000).CrossRefADSGoogle Scholar
  2. 2.
    H. Baumgardt, C. Dettbarn, and R. Wielen, Astron. Astrophys., Suppl. Ser. 146, 251 (2000).CrossRefADSGoogle Scholar
  3. 3.
    L. N. Berdnikov, O. V. Vozyakova, and A. K. Dambis, Pis'ma Astron. Zh. 22, 936 (1996) [Astron. Lett. 22, 838 (1996)].ADSGoogle Scholar
  4. 4.
    R. Bottema, Astron. Astrophys. 275, 16 (1993).ADSGoogle Scholar
  5. 5.
    J. Brand and L. Blitz, Astron. Astrophys. 275, 67 (1993).ADSGoogle Scholar
  6. 6.
    D. P. Clemens, Astrophys. J. 295, 422 (1985).CrossRefADSGoogle Scholar
  7. 7.
    A. K. Dambis, Pis'ma Astron. Zh. 16, 522 (1990) [Sov. Astron. Lett. 16, 224 (1990)].ADSGoogle Scholar
  8. 8.
    A. K. Dambis, Pis'ma Astron. Zh. 25, 10 (1999) [Astron. Lett. 25, 7 (1999)].Google Scholar
  9. 9.
    A. K. Dambis and A. S. Rastorguev, Pis'ma Astron. Zh. 27, 132 (2001) [Astron. Lett. 27, 108 (2001)].Google Scholar
  10. 10.
    A. K. Dambis, A. M. Mel'nik, and A. S. Rastorguev, Pis'ma Astron. Zh. 21, 331 (1995) [Astron. Lett. 21, 291 (1995)].ADSGoogle Scholar
  11. 11.
    A. K. Dambis, A. M. Mel'nik, and A. S. Rastorguev, Pis'ma Astron. Zh. 27, 68 (2001) [Astron. Lett. 27, 58 (2001)].Google Scholar
  12. 12.
    A. K. Dambis, E. V. Glushkova, A. M. Mel'nik, and A. S. Rastorguev, Astron. Astrophys. Trans. 20, 161 (2001).Google Scholar
  13. 13.
    W. Dehnen and J. J. Binney, Mon. Not. R. Astron. Soc. 298, 387 (1998).CrossRefADSGoogle Scholar
  14. 14.
    R. Drimmel and D. N. Spergel, Astrophys. J. 556, 181 (2001).CrossRefADSGoogle Scholar
  15. 15.
    M. Duflot, P. Figon, and N. Meyssonnier, Astron. Astrophys., Suppl. Ser. 114, 269 (1995).ADSGoogle Scholar
  16. 16.
    Yu. N. Efremov, Sites of Star Formation in Galaxies: Star Complexes and Spiral Arms (Nauka, Moscow, 1989).Google Scholar
  17. 17.
    M. Feast, F. Pont, and P. Whitelock, Mon. Not. R. Astron. Soc. 298, L43 (1998).CrossRefADSGoogle Scholar
  18. 18.
    J. Fernley, T. G. Barnes, I. Skillen, et al., Astron. Astrophys. 330, 515 (1998).ADSGoogle Scholar
  19. 19.
    M. Fich, L. Blitz, and A. A. Stark, Astrophys. J. 342, 272 (1989).CrossRefADSGoogle Scholar
  20. 20.
    H. T. Freudenreich, Astrophys. J. 492, 495 (1998).CrossRefADSGoogle Scholar
  21. 21.
    E. V. Glushkova, A. K. Dambis, A. M. Mel'nik, and A. S. Rastorguev, Astron. Astrophys. 329, 514 (1998).ADSGoogle Scholar
  22. 22.
    E. V. Glushkova, A. K. Dambis, and A. S. Rastorguev, Astron. Astrophys. Trans. 18, 349 (1999).Google Scholar
  23. 23.
    A. Gould and P. Popowski, Astrophys. J. 508, 844 (1998).CrossRefADSGoogle Scholar
  24. 24.
    S. L. Hawley, W. H. Jeffreys, T. G. Barnes III, and Lai Wan, Astrophys. J. 302, 626 (1986).CrossRefADSGoogle Scholar
  25. 25.
    M. Honma and Y. Sofue, Publ. Astron. Soc. Jpn. 49, 453 (1997).ADSGoogle Scholar
  26. 26.
    D. K. Karimova and E. D. Pavlovskaya, Astron. Zh. 50, 737 (1973) [Sov. Astron. 17, 470 (1973)].ADSGoogle Scholar
  27. 27.
    S. Kent, T. M. Dame, and J. Fazio, Astrophys. J. 378, 131 (1991).CrossRefADSGoogle Scholar
  28. 28.
    P. N. Kholopov, Astron. Zh. 57, 12 (1980) [Sov. Astron. 24, 7 (1980)].ADSGoogle Scholar
  29. 29.
    J. R. D. Lepine, Yu. N. Mishurov, and S. Yu. Dedikov, Astrophys. J. 546, 234 (2001).ADSGoogle Scholar
  30. 30.
    J. R. Lewis and K. C. Freeman, Astron. J. 97, 139 (1989).CrossRefADSGoogle Scholar
  31. 31.
    C. C. Lin, C. Yuan, and F. H. Shu, Astrophys. J. 155, 721 (1969).CrossRefADSGoogle Scholar
  32. 32.
    S. Malhotra, Astrophys. J. 448, 138 (1995).CrossRefADSGoogle Scholar
  33. 33.
    F. Maeder and G. Meynet, Astron. Astrophys., Suppl. Ser. 89, 451 (1991).ADSGoogle Scholar
  34. 34.
    A. M. Mel'nik, A. K. Dambis, and A. S. Rastorguev, Pis'ma Astron. Zh. 27, 611 (2001) [Astron. Lett. 27, 521(2001)].Google Scholar
  35. 35.
    M. R. Merrifield, Astron. J. 103, 1552 (1992).CrossRefADSGoogle Scholar
  36. 36.
    Yu. N. Mishurov, E. D. Pavlovskaya, and A. A. Suchkov, Astron. Zh. 56, 268 (1979) [Sov. Astron. 23, 147 (1979 )].ADSGoogle Scholar
  37. 37.
    Yu. N. Mishurov, I. A. Zenina, A. K. Dambis, et al., Astron. Astrophys. 323, 775 (1997).ADSGoogle Scholar
  38. 38.
    C. A. Murray, Vectorial Astrometry (A. Hilger, Bristol, 1983; Naukova Dumka, Kiev, 1986).Google Scholar
  39. 39.
    I. I. Nikiforov, Astron. Zh. 76, 403 (1999) [Astron. Rep. 43, 345 (1999)].Google Scholar
  40. 40.
    I. I. Nikiforov and I. V. Petrovskaya, Astron. Zh. 71, 725 (1994) [Astron. Rep. 38, 642 (1994)].ADSGoogle Scholar
  41. 41.
    F. Pont, M. Mayor, and G. Burki, Astron. Astrophys. 285, 415 (1994).ADSGoogle Scholar
  42. 42.
    P. Popowski and A. Gould, Astrophys. J. 506, 259 (1998).ADSGoogle Scholar
  43. 43.
    A. S. Rastorguev, Determination of Rotation Curve and Scale of Distance in Galaxy, http://www.astronet.ru:8101/db/msg/1172553.
  44. 44.
    A. S. Rastorguev, E. V. Glushkova, A. K. Dambis, and M. V. Zabolotskikh, Pis'ma Astron. Zh. 25, 689 (1999) [Astron. Lett. 25, 595 (1999)].Google Scholar
  45. 45.
    A. S. Rastorguev, E. V. Glushkova, M. V. Zabolotskikh, and H. Baumgardt, Astron. Astrophys. Trans. 20, 103 (2001).Google Scholar
  46. 46.
    K. Rohlfs, Lectures on Density Wave Theory (Springer-Verlag, Berlin, 1977; Mir, Moscow, 1980).Google Scholar
  47. 47.
    W. L. H. Shuter, Mon. Not. R. Astron. Soc. 199, 109 (1982).ADSGoogle Scholar
  48. 48.
    J. Torra, D. Fernandez, F. Figueras, and F. Comeron, Astrophys. Space Sci. 272, 109 (2000).CrossRefADSGoogle Scholar
  49. 49.
    T. Tsujimoto, M. Miyamoto, and Y. Yoshii, Astrophys. J. Lett. 492, L79 (1998).CrossRefADSGoogle Scholar
  50. 50.
    P. C. van der Kruit and K. C. Freeman, Astrophys. J. 303, 556 (1986).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • M. V. Zabolotskikh
    • 1
  • A. S. Rastorguev
    • 1
    • 2
  • A. K. Dambis
    • 2
  1. 1.Moscow State UniversityVorob'evy gory, MoscowRussia
  2. 2.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations