Astronomy Letters

, Volume 28, Issue 7, pp 423–427

Do the fundamental constants vary in the course of cosmological evolution?

  • A. V. Ivanchik
  • E. Rodriguez
  • P. Petitjean
  • D. A. Varshalovich
Article

Abstract

The possible cosmological variation of the proton-to-electron mass ratio μ = mp/me was estimated by measuring the H2 wavelengths in the spectra of distant quasars. We analyze high-resolution (FWHM≈7 km s−1) spectra of the two damped Lyman-α systems at redshifts zabs=2.3377 and 3.0249 observed in the spectra of the quasars Q 1232+082 and Q 0347−382, respectively. Our analysis yielded the most conservative estimate for the possible variation of μ in the past ∼ 10 Gyr, Δμ/μ = (5.7 ± 3.8) × 10−5. Since the significance of this result does not exceed 1.5σ, further observations are needed to increase the statistical significance. This is the most stringent limit on the possible cosmological variation of μ to date.

Key words

theoretical and observational cosmology quasar spectra fundamental constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Abgrall, E. Roueff, F. Launay, et al., Astron. Astrophys., Suppl. Ser. 101, 273 (1993).ADSGoogle Scholar
  2. 2.
    R. C. Bohlin, J. K. Hill, E. B. Jenkins, et al., Astrophys. J., Suppl. Ser. 51, 277 (1983).CrossRefADSGoogle Scholar
  3. 3.
    X. Calmet and H. Fritzsch, hep-ph/0112110 (2001).Google Scholar
  4. 4.
    T. Damour and A. M. Polyakov, Nucl. Phys. B 423, 532 (1994).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S. D'Odorico, M. Dessauges-Zavadsky, and P. Molaro, Astron. Astrophys. 368, L21 (2001).CrossRefADSGoogle Scholar
  6. 6.
    J. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Ivanchik, A. Y. Potekhin, and D. A. Varshalovich, Astron. Astrophys. 343, 439 (1999).ADSGoogle Scholar
  8. 8.
    S. A. Levshakov, M. Dessauges-Zavadsky, S. D'Odorico, and P. Molaro, Astrophys. J. 565, 696 (2002).Google Scholar
  9. 9.
    P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72(2), 351 (2000).CrossRefADSGoogle Scholar
  10. 10.
    D. C. Morton and H. L. Dinerstein, Astrophys. J. 204, 1 (1976).CrossRefADSGoogle Scholar
  11. 11.
    P. Petitjean, R. Srianand, and C. Ledoux, astro-ph/0011437 (2000).Google Scholar
  12. 12.
    A. Y. Potekhin, A. V. Ivanchik, D. A. Varshalovich, et al., Astrophys. J. 505, 523 (1998).CrossRefADSGoogle Scholar
  13. 13.
    J.-Y. Ronchin and F. Launay, J. Phys. Chem. Ref. Data, No. 4 (1994).Google Scholar
  14. 14.
    D. A. Varshalovich and C. A. Levshakov, Pis'ma Zh. Éksp. Teor. Fiz. 58, 231 (1993) [JETP Lett. 58, 237 (1993 )].Google Scholar
  15. 15.
    D. A. Varshalovich and A. Y. Potekhin, Space Sci. Rev. 74, 259 (1995).CrossRefADSGoogle Scholar
  16. 16.
    M. I. Vysotskii, V. A. Novikov, L. B. Okun', and A. N. Rozanov, Usp. Fiz. Nauk 166(5), 539 (1996) [Phys. Usp. 39, 503 (1996)].Google Scholar
  17. 17.
    J. K. Webb, M. T. Murphy, V. V. Flambaum, et al., Phys. Rev. Lett. 87, 091301 (2001).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • A. V. Ivanchik
    • 1
  • E. Rodriguez
    • 2
  • P. Petitjean
    • 2
    • 3
  • D. A. Varshalovich
    • 1
  1. 1.Ioffe Physicotechnical InstituteSt. PetersburgRussia
  2. 2.Institut d'Astrophysique de Paris—CNRSParisFrance
  3. 3.France

Personalised recommendations